ISSN 2756-3251
Advanced Journal of Environmental Science and Technology ISSN 7675-1686 Vol. 2 (4), pp. 001-007, April, 2011. © International Scholars Journals
Full Length Research Paper
Predicting chromium (VI) adsorption rate in the treatment of liquid-phase oil-based drill cuttings
Reuben N. Okparanma* and Miebaka J. Ayotamuno
Department of Agricultural and Environmental Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State, Nigeria.
Accepted 09 January, 2011
Abstract
The adsorption rate of chromium (VI) on commercial activated carbon during the treatment of the flocculation effluent of liquid- phase oil-based drill-cuttings has been investigated in terms of contact time and initial chromium (VI) ion concentration. Homogenizing 1 g of the activated carbon with 100 ml of the flocculation effluent of known initial concentrations (1.25 6.25 mg/l, in turn) in a flask, at a constant stirring speed of 80 rpm at 25oC for 180 min, the pseudo- second- order kinetics was observed to be more suitable in predicting the adsorption rate of chromium (VI) ion in the treatment process as experimental data fitted the model relatively better than the pseudo -first-order kinetics with R2 = 0.9999. Adsorption took place in two steps: an initial high rate step before reaching a plateau at equilibrium in the low rate step. Equilibrium was attained in a contact time of 60 min and the equilibrium adsorption capacity of the activated carbon was 78.6%. Equilibrium adsorption data fitted the Freundlich isotherm well with R2 = 0.981. The intensity of adsorption was 1.32, which indicates a strongly favourable adsorption. This showed that a large proportion of the chromium (VI) ion was adsorbed at low concentration of the adsorbate in solution.
Key words: Carbon adsorption, kinetic models, drill cuttings, chromium removal.