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This paper evaluates numerically the dynamic behavior of structural composite laminate materials in 

relation to the angular change in fiber layers of the laminated composite. The behavior of the material is 

modeled through finite element method, where the First Order Shear Deformation Theory (FSDT) is used 

which is implemented on a rectangular element serendipity containing eight nodes. The mathematical 

modeling has been implemented using the commercial available software MATLAB®. Through 

numerical simulations, it will be possible to obtain the natural frequencies. And we will present a 

sensitivity analysis with respect to the fiber orientation parameter. 
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INTRODUCTION 
 
Composite materials have been increasingly highlighted 
in recent decades due to its advantages to the traditional 
engineering materials (steel or aluminum), characterized 
by its low density associated with high strength/stiffness 
relation characteristics, and its anti-corrosion properties. 
A composite material can be defined when two or more 
different materials are combined together to create a 
superior and unique material, to obtain a set of properties 
that none of the components individual features 
(Mendonça, 2005). There are different classifications for 
composite materials available in the literature. They can 
be classified according to morphology of the dispersed  
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phase in particle reinforced composites, fiber reinforced 
composites and composites structural (Reddy, 1997). 
The composite structural laminate consists of a layer 
stack attached to each other with the fibers oriented in 
different directions. And laminate typically consists of 
several layers, often identical, varying its guidelines to 
better meet the design requirements and manufacturing 
(Diacenco, 2010). 

Composite materials are increasingly present in dif-
ferent areas of Engineering where it is necessary to study 
and analyze the behavior of these materials because, it 
can be stated that the engineering structures are subject 
to disturbances that affect static or dynamic response 
characteristics and performance of the structural system 
and control actions or vibration monitoring natural 
frequencies become necessary.  

In the case of structural composites becomes relevant 

perform the analysis of stacking sequence of layers of the 
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composite structure in the context of attenuation of 
vibration levels, as high vibrations are to be avoided 
within the structural integrity, and this can be analyzed to 
obtain the functions of frequency response of the 
composite.  

The use of numerical methods to assess the structural 
stability have been widely studied and applied by Reddy 
(1997), Faria et al. (2006), Lima et al. (2009) and 
Diacenco et al. (2013). Among these methods, the finite 
element method has been shown to be the most suitable, 
due to its characteristics of modeling flexibility and 
relative ease of implementation numerical computational 
complex problems in engineering and in the literature can 
be found a wide variety of theories used in the formu-
lation of elements applied to finite composite materials. 
For the purposes of this paper, the well-known First-
Order Shear Deformation Theory (FSDT), proposed by 
Reddy (1997), such theory presents significant results 
when working with moderately thick plate where is imple-
mented in a rectangular Serendipity element containing 
eight nodes and five degrees of freedom per node. Based 
on what was stated above, the main objective of this 
article is the implementation numerical computation using 
the finite element method for composite plates and 
evaluates the influence of the stacking sequence of the 
layers composite in their dynamic behavior in terms of 
characterization of natural frequencies and vibration 
amplitudes. 
 
 
FINITE ELEMENT MODELING 
 
The mechanical behavior of the composite structure can 

be modeled by using the FSDT, in which the 

displacements at an arbitrary point in such a composite is 

expressed as follows: 

 
 
 
plane displacements and the cross-section rotations in x 
and y directions. The usual strain–displacement relations 

are used and the resulting strains are separated in  

bending and  transverse shear strains,   b and s , 
 

respectively, as follows:     
 

b   x, y , z , tD0       z D1    u x , y , t   Db  z u x , y , t (5) 
 

s   x, y , z , tD2    u x , y , t   Ds u x , y , t  (6) 
 

Where b  x, y, z, txx 
T  

and 
 

yy   zz   xy  
 

  T 
xx      u  x ,   yy v y , 

 

s  x, y, z, tyz   zx    .  

zz w  z ,  xyu  y   v  x , 
 

yz v  z   w  y    and 
 

zx u  z   w  x .Matrices Di   i  0,...,3 are 
 

formed by differential operators appearing in the strain– 
displacement relations.  

Discretization of the displacement variables is made by 

using appropriate interpolation functions. Hence, for the 

eight nodes rectangular plate element, the five mecha-

nical variables included in vector u(x, y, t) are interpolated 

from their corresponding 40 nodal values through the 

following relation: 
 

u  ,  , t   N  ,   u t (7) 
 
Where: 
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In Equation (1): 
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 N  , of dimensions 5 x 40, is the matrix formed by 
 

(2) 
the standard serendipity eight-node shape interpolation 

 

functions formulated in local 
 

 coordinates   ,  ,  1  ξ 1 . And this was illustrated in 
 

Figure  1.  By  associating  Equations  (1)  to  (4),  the 

(3) displacement and strain fields are found to be expressed in 
terms of the nodal values as follows:   

U x, y, z,t   A z N  ,   u t (8) 

u x, y , t  
x , y , t  v0   x , y , t w0   x , y , t 

 
T 

 

 
 

u
0 x   x , y , t    y   x , y,t  

 

             (4) 
 

where u x, y, z,t , v x, y, z,t , e w x, y, z,t denote the 
 

displacements in directions x, y and z. respectively. 
 

u 

0 

, v 

0 

, w  and  , 

y 

are, respectively, the mid- 
 

  0    x      
 

 
 

b  x, y, z,t   Db  z N  ,   u t   Bb    ,  , z u t (9) 

s   x, y , z , t   Ds N  ,   u t   B s     ,   u t (10) 
 
Based on the stress-strain relations, the strain and kinetic 

energies of the composite plate element can be formulated 
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Figure 1. Serendipity family element used in the finite element formulation of laminated 

composite plates: (a) local coordinates, (b) coordinates. 
 
 
 
in terms of the natural variables of strain field and the me-

chanical material properties. After, Lagrange’s equations 

are used, considering the nodal displacements and ro- 

 
 
 
tations as generalized coordinates, to obtain the following 

elementary mass and stiffnesses matrices, respectively: 
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In Equations (11) to (13) det J indicates the determinant 

of the Jacobian of the transformation from the in-plane 

physical variables x, y to the natural variables , , and 

matrices Cb
k
 k and Cs

k
 k  

represent, respectively, the orthotropic bending and shear 

elastic matrices of the kth layer, which are constructed 

according to the Classical Laminate Theory (CLT) as 

follows: 
 

k   

kT 
k (14) 

 

  
 

C b k      Tb    k   C b Tb  

k   

k T 

k (15) 

 

  
 

C s k      Ts    k   C s  Ts 
  

Where Cb
k
 and Cs 

k
 are, respectively, the bending and 

shear elastic property matrices of the k
th

 layer, referred to 

its principal orthotropic axis, and Tb k and Ts k are the 

associated rotation matrices. From the elementary  

 
matrices computed for each element of the finite element 

mesh, the global equations of motion are constructed, 

accounting for the node connectivity, using standard finite 

element assembling procedures, Huebner et al. (1982). 

After assembling, the global equations of motion in the 

time domain can be written as follows: 
 
 

(16) 

 

Mq t   Kq t    f t 
 

nelem nelem 
 

Where
e   

and
e   

are the global FE 
 

e 1 e 1 
  

mass and stiffness matrices. Symbol indicates matrix 

assembling and q t is the vector of global d.o.f’s.  
f t is the vector of generalized external loads. 

 
The equations of motion in the time domain (16) can be 

used to perform various dynamic analyzes such as the 

calculation of response time, eigenvalues and eigen 

vectors, and frequency responses. In the frequency 



   

domain the above equation in (16) takes the form: 

  ,T
2 

M  QF (18) 

FbU   ,YcQ (19) 

 
which M , K (  ,T )   R 

NxN
 respectively represent  the 

mass matrix (symmetric, positive-definite) and the 

stiffness matrix (symmetric and nonnegative definite.)  
Q( ) R 

N
 and F ( ) R 

N
 represent, respectively, the 

displacement vector and the vector of external forces.  

Y (  )   R
c
 is the vector of responses, and the vector 

U (  )   R 
f
 is reduced from external forces. And the 

matrices  b  R
Nxf

 and  c  R
cxN

  are the matrices that 
allow to choose among degree-of-freedom of the finite 

element model the degrees of freedom where the forces 

are applied excitation, and the degrees of freedom which 

are calculated system response, respectively. Expression 

(17) yields the following expression for the complex 

dynamic stiffness matrix: 
 

Z  , T    Ke   G  , T 

 

v      
2
 M (20) 

 

K 
 

 
Defined the complex stiffness, the next step is to solve 

the system in the frequential domain, which can be done 

by building dynamic flexibility matrix or array of 

Frequency Response Functions (FRFs): 
 

H  ,T   cZ  ,T 
-1

 b (21) 

 
SENSITIVITY ANALYSIS FOR DYNAMIC RESPONSES 

OF FINITE DIFFERENCES 
 
The global finite element matrices appearing in finite 

element modeling establish the dependence of the 

response of the system with respect to a set of design 

parameters. Such functional dependence can be 

expressed as follows: (Lima et al., 2009): 
 
 

r  r M p , K p (22) 

 
 
Where r and p designate vectors of structural responses 
and design parameters, respectively.  

The sensitivity of the responses with respect to a given 

parameter pi , evaluated for a given set of values of the  
design  parameter   p

0
 can  be  estimated  by  finite  

differences and then defined as the following partial 

derivative: 
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Where   pi   is an arbitrary variation tending to zero, 
 

applied to the current parameter value pi
0
 while all other 

parameters are kept unchanged. The sensitivity of the 

response with respect to pi can be estimated numeri-  
cally by finite differences by calculating successive res- 

 
ponses  corresponding  to e  pi    pi

0
      pi ,   as 

 
follow: 
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(25) 
 
This procedure is efficient when it comes to small struc-

tures and their use qualitatively describes the degree of 

influence of different design parameters on the dynamic 

response: the larger the amplitude of the sensitivity 

functions with respect to a given design parameter, the 

greater the influence of this parameter on the dynamic 

responses. 
 
NUMERICAL SIMULATIONS 
 
Here, we present two different numerical applications were 

implemented in the programming environment Matlab 
®

. The 

first attempt to evaluate the FSDT accuracy of the theory in 
obtaining the natural frequencies of composite structures. 

The second and third numerical applications show the effect 
of orientation and stacking sequence of layers in the loss 

factors and natural frequencies vibration of laminated 

composite structures.  
In the two numerical applications it is considered a flat 
plate composite laminate, using the FE model of a simple  
supported square Lx = Ly = 0.16 m, composite plate as 
shown in Figure 2 illustrate the model composed by a 
total number of 64 finite elements and 225 nodes. The 
following simply supported boundary conditions are 
applied on the square composite plate (Correia et al.,  
2000): u0 = w0= ψz = ςx= ςz = 0 in y = 0 and y = Ly, e u0 = 
w0= ψz = ςy= ςz = 0 in x = 0 and x = Lx. The composite  
plate consists of 5 layers of the same thickness h/5 
(h=a/128m).The real values of the material properties 

characteristics of  each layer are E1    172,4GPa , 
 

   

 

  

6,89GPa , 
     

3,45GPa 

,
 

 

 

23    1,38GPa , 
 

 

E 
 

E3  

    

G 
 

 
2 G

12
G

13 
 

12 13 0,25 ,  23 0,30 , 1566 kg m
3
 .     

 

 
First application 
 
In this first application will be considered five layers 

laminated oriented (0 ° / 90 ° / 0 °/ 90 ° / 0 °) and (90 ° / 0 

 pi    pi
0
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Figure 2. Mash of finite elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Vibration amplitudes for different stacking sequences. 

 
 
Table 1. Natural frequencies for the first three modes of vibration to 

(0°/ 90°/0°/90°/0°). 

 
 
Table 2. Natural frequencies for the first three vibration modes of 

the (90°/0°/90°/0°/90°). 
 
 Mode Natural frequency (Hz) 
 1 293.09 
 2 429.49 
 3 1273.7 

 
 

 Mode Natural frequency (Hz) 
 1 97.696 
 2 141.94 
 3 341.01 

 
 
° / 90 ° / 0 ° / 90 °) with the same thickness. Figure 3 

shows vibration amplitudes of the laminated structure. 

The results shown in Tables 1 and 2 clearly show the 

influence of orientation of the fibers on the dynamic 

behavior, since the symmetry of the variation layers alters 

 
significantly the frequencies of vibration. 

 
Second application 
 
The  discretized  by  finite elements, the geometrical 
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Figure 4. Composite laminate illustrating the design parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Sensitivity of the FRF obtained with respect to for 1% 
. 

 

1 1 1 
 

 
 
 
characteristics and conditions of laminated composite 
contour of the plate are the same as those in the example 

section earlier. It present the calculation of sensitivities of 
the FRFs of the composite plate laminated according to 

Equation (25) using successive variations of fiber 
orientation, corresponding to 1% of the nominal 
configuration (90°/0°/90°/0°/90°). Figure 4 illustrates the 

composite laminate. Figures 5 to 7 show the response 
functions frequency calculated by finite differences. The 

larger the amplitude of the sensitivity function with 

 
 
 
respect to a given design parameter, the greater the 

influence of this parameter on dynamic responses. In this 

case, it is observed that the orientation of the three five 

layers show a significant influence on the dynamic 

behavior of composite plates. 

 
Conclusions 
 
The numerous numerical simulations conducted to 

evaluate the performance of modeling procedures 
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Figure 6. Sensitivity of the FRF obtained with respect to  3  for    3   3 1% . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Sensitivity of the FRF obtained with respect to  5  for 5   5 1% . 
 
 
developed as a tool for analysis and design laminated 

composite structures to show important aspects of 

dynamic behavior of the same in terms of the parameter 

sensitivities orientation of the fibers in the layers. 
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