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Dynamic variations in the curvilinearity of coronary arteries pose significant challenges for study using current 
angiograms. Nonetheless, both experimental and clinical evidence indicates that vessel extraction is valuable for 
surgical treatment and clinical research. In this paper, we present an automated algorithm designed to identify the 
outlines of coronary artery tree blood vessels in angiograms. This approach serves as a practical tool for 
physicians. The algorithm automates the segmentation of coronary arteries from cineangiograms, followed by 
precise extraction of vessel features. Such preprocessing, in conjunction with a matched Gaussian filter, can 
significantly enhance results. The segmentation algorithm comprises two key processes: (1) Gaussian filtering of 
blood vessels and (2) thresholding. We evaluated the algorithm using a raw dataset of 100 angiogram images, 
validating the results through two methods. First, hand-labeled annotations provided ground truth segmentation 
for 20 images, revealing that our algorithm outperformed manual detection, even in cases of poor contrast that the 
naked eye could not recognize. Second, we employed a questionnaire to assess the effectiveness of the 
illustrated output. The hand-labeling matched our results with an accuracy of 98%, while the questionnaire 
validation rate was 90.84%. We conclude that our enhanced algorithm is effective for extracting coronary artery 
tree vessels, including smaller branches. Additionally, the algorithm operates efficiently, completing vessel 
extraction in approximately 14 to 15 seconds per image. 
 
Key words: Angiocardiography, coronary artery segmentation, matched filter, adaptive thresholding, vessel 

extraction. 
 
INTRODUCTION 

 

Coronary angiograms are used to guide physicians in the 
medical diagnosis and also treatment of cardiac patients. 
Major advances in coronary angiography have been 
made with the help of medical imaging techniques 
including biplane angiography and digital subtraction 
angiography (DSA) (Saito et al., 1990). Such techniques 
allow the diagnosis of all structural anomalies in the 
cardiovascular system, that is, suitable for medical 
treatment and surgical revascularization. Since these 
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medical and surgical therapies are becoming more 
sophisticated, it is also becoming increasingly important 
to conduct quantitative analysis on angiographic images 
in order to understand the configuration of the coronary 
arteries. Coronary artery disease (CAD) concerns the 
narrowing or blockage of the arteries that provide blood 
to the heart muscles. Consequently, coronary 
angiograms have remained an indispensable tool in 
clinics for the diagnosis of CAD. In general, visual 
inspection of coronary angiograms suffers from inherent 
imprecision that has led to the development of the semi - 
and fully - automatic tools that apply computerized 
techniques for image analysis to the assessment of the 
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coronary artery disease (Saito et al., 1990; Canny, 1983). 
Vessel extraction is an important task to guide physicians 
through vessel treatment procedures and which results in 
more medical benefits. However, extraction from 
angiograms did not take much space in previous work 
since this kind of images has low signal to noise ratio. 
Nowadays, most of the radiologists prefer angiograms 
because of the real-time diagnose and treatment they 
offer. In addition, vessel extraction considers as the first 
step in medical imaging pre-processing procedures that 
can lead for more helpful technical approaches in the 
future. One of those procedures is reconstruction of the 
coronary arteries in 3D at various phases of the cardiac 
cycle which was proven to be useful for analyzing the 
absolute motion of the myocardium as well as estimation 
of regional wall stress, as discussed in Saito et al. (1990) 
and Canny (1983). There are a number of earlier related 
works for estimating 3D features of coronary arteries 
through computer analysis (Saito et al., 1990; Chaudhuri 
et al., 1989). 

Vessel centreline extraction was reported in many 
previous work papers. The procedure stands of tracking 
down the centrelines of vessels and produce the total 
tree of blood vessels. Even thought this kind of work is 
very helpful and useful in many aspects, but it stays slow 
and does not offer information about vessel borders. The 
presented algorithms and approaches in vessel 
extraction used three different ways of solving the 
problem. Some of them used the geometrical topology 
information, others used the intensity information, and the 
rest combined between both of them to obtain the 
proposed tracking direction. The algorithm proposed in 
Xu et al. (2007) used the third way of combination 
between geometrical topology and intensity to track down 
the centerlines of vessels. The algorithm has been 
described as successful in extracting vessels centrelines 
with satisfactory accuracy. The paper investigated using 
matched filter on the eigenvalues which would make 
centreline extraction much easier. The work in Aylward 
and Bullitt (2002) presented the centerline extraction of 
tubular objects (blood vessels) in 2D and 3D images. The 
work was part of a task to analyze bunch of clinical 
images. This work was based on another paper for them 
was published in 1996 to handle noise using multi scale 
and optimal scale measurements (Aylward et al., 1996). 
The work was enabled as fast and accurate but was 
conducted on CT-scan, MRA and 3D-ultrasound images. 
Meanwhile, in Schreiner and Buxbaum (2002) work, an 
algorithm was presented to build a model of arterial 
vascular tree by adding terminal of vessel segments. The 
model was built by adding segments to the preexisting 
tree, then the new bifurcation is optimized geometrically. 
The work was compared to real coronary artery trees to 
demonstrate its strength points of showing structure of 
the arterial trees, pressure profile and morphometric 
parameters. We observed the output of this algorithm and 
it  showed the coronary artery tree in full segments 

(around 4000 segments and 2 days of computing time) 
which is not necessary in our work. 

The vessel extraction from 3D angiograms took a 
space in this field also. Wherein, Wong and Chung 
(2008), we can find a method to segment blood vessels 
and extract their centerlines in 3D angiograms. The 
method involved discussing principal curvatures and 
vessel centerline extraction. Upon a user supplement of 
two end points to the algorithm, it can extract vessel 
centerline between the two points automatically. Another 
algorithm was presented in Sun (1989) adopted the same 
principal of initial start of search points. The algorithm 
would update tracking process by matched filter 
guidance. The algorithm was robust and efficient in 
tracking process in DSA and cineangiograms. Another 
algorithm was described in Wang et al. (2005) to extract 
vascular centerlines and contours in coronary 
angiography. By closely observing this work, we noticed 
that the algorithm used digital subtracted angiography 
(DSA) and it was to extract centerline and contours of 
vessels only. In addition, the algorithm needed seed 
points to start the extraction procedure. We tried DSA 
angiography and extracting was much easier than normal 
grayscale angiograms. Finally, a great amount of various 
vessel extraction approaches and techniques were 
reviewed and classified by means of the existence in 
Kirbas and Quek (2004). Previous works are based on 
the X-ray geometry of projections as well as the iterative 
identification of the matching structures from several 
views. The well-documented in accuracy in the visual 
interpretation of angiograms has motivated the 
development of the automated methods in order to 
quantify arterial morphology. Understandably, the 
accurate description of the arterial trees would be helpful 
for conducting quantitative diagnosis on atherosclerosis, 
as well as for treatment, surgery or associated planning. 
It would also be useful for monitoring the progress of 
disease or remission, and comparing the effectiveness of 
treatments. 

The appearance of the blood vessels is regarded as an 
important indicator and is used for many diagnoses 
including diabetes, hypertension and arteriosclerosis. 
Arteries and veins have many observable attributes such 
as diameter, tortuosity or relative amount of curvature, 
colour and level of opacity (reflectivity). The crossing and 
patterns of artery-veins in small vessels could also be 
used as diagnostic tools. The accurate delineation of the 
boundaries of the blood vessels makes the exact 
measurements of these attributes possible. Such 
measurements might then be used for a variety of 
different tasks including diagnosis, evaluation of 
treatment and clinical study (Saito et al., 1990). We 
present here a semi-automatic algorithm for extraction of 
coronary artery trees blood vessels in angiograms. Our 
algorithm was inspired by Hoover et al. (2000) who 
demonstrated a vessel extraction in retina images. Since 
the algorithm in Hoover et al. (2000) was used for a 



 
 

 
 

 
 

 

  
 

Figure 1. An example of angiogram with coronary artery tree vessels (left) and 
Gaussian filter response (right). 

 

different type of images (retina) which have different 
functionality and features from our images (angiogram); 
we were inspired to design our algorithm that can work 
with angiograms even thought it has been a big 
challenge. Such an algorithm can be regarded as very 
helpful tools that can assist heart specialists observe 
larger populations of vessel abnormalities. The exact 
measurements can be recorded more easily in, for 
example, treatment evaluation, clinical study and other 
applications as reported in Saito et al. (1990). The 
previous algorithms for automatic segmentation of blood 
vessels have concentrated mainly on the local features. 
Vessels can be characterized according to gradient 
(boundary strength), shape (that is, curvilinear) and 
contrast with their background. Regarding suitable 
ranges of such features, other image manifestations 
including boundaries of the optic nerves and also certain 
lesions and haemorrhages might also show the same 
local features as vessels (Cote et al., 1994). 

The strength level of the Gaussian filter has been 
coded in greyscale, which means the stronger the 
response, the darker the pixel. Gaussian equation can 
work well as the determinant of an image threshold value 
by using controllable variance factor. The proposed idea 
in this paper is to make the variance value controllable by 
the user; the issue that can affect the Gaussian filter 
response itself. Therefore, the threshold value will be 
determined according to that response of the Gaussian 
filter. Figure 1 shows how Gaussian response can affect 
an image appearance. Our algorithm was applied on 
angiograms to extract coronary artery trees with full 
branches that could not be recognized in unprocessed 
angiogram images. 

 
 

MATERIALS AND METHODS 
 

Here, first, we briefly review the data acquisition (preparation and 
procedure) and the data pre-processing. Next, the Gaussian 
matched filter construction is explained upon which the improved 
algorithm is built. Then, we present the threshold examination 

process by emphasizing both variance value and lighting effects on 
the thresholding process. Finally, the improved stages upon which 
the algorithm was built are presented. When using the previous 
algorithm, a blood vessel is tested by examining a certain area of 
the matched filter. During each iteration, the features of the blood 
vessel are tested to examine the continuation, and ultimately to 
decide whether the segment is from a vessel. Pixels that are not 
classified as a vessel will be re-examined. 

 

 
Data acquisition 

 
Angiograms are the data to be used in this paper to implement our 
algorithm. Angiography is defined as the X-ray investigation of 
blood vessels. Angiograms make use of a radiopaque dye or 
substance that allows blood vessels to be seen under applied X-ray 
(Saito et al., 1990). Arteriography is classified as a type of 
angiography that involves the examination of arteries. In fact, 
angiography is usually conducted in hospitals by trained 
radiologists and by assisting professional technicians and nurses 
(Saito et al., 1990). It is performed in X-ray or fluoroscopy suites. 
For most angiogram types, the patient’s vital signs should be 
continuously monitored throughout the process. 

 
 

Preparation for angiography 
 

Angiography requires the injection of a contrast dye that makes the 
vessels visible under X-ray. The dye has to be injected through the 
procedure of ‘arterial puncture’ with the puncture generally being 
created in the groin area, inside elbow, armpit or neck. The site 
must be cleaned by using an antiseptic agent, and then injected 
with a local anaesthetic (Saito et al., 1990). 

 
 

Procedure of angiography 
 

The procedure was explained by Leigh (2010). It starts with 
positioning the patient on their back and may include fastening 
them with straps across the chest and legs to keep them safe. They 
may be given a sedative medicine to help them remain calm while 
their veins are connected to the IV lines. However, the sedative will 
not put them to sleep and they will remain aware throughout the 
procedure of any instructions from the doctors or nurses to move 
their arms or hold their breath. Leigh (2010) continues explaining 
the angiogram procedures that include monitoring the heart 
throughout the procedure through an electrode that is fixed to the 



  
 

 

 

patient’s chest. In addition, they should also measure the oxygen in 
the patient’s blood and the blood pressure throughout the test 
procedure. The site must be cleaned by using an antiseptic agent, 
and then injected with a local anaesthetic. Initially, a small incision 
should be made in the skin to help the needle to pass through. 
Subsequently, a needle which contains a long inner wire called a 
stylet is inserted through the skin directly into the artery or the heart. 
The last stage of the procedure according to Leigh (2010) is when 
the catheter reaches its place near the heart. Then, a contrast dye 
will be injected into the veins. The doctor will be able to identify any 
blockage area(s) in the coronary artery vessels by the flow of the 
dye through the vessels. 

 

 
Data pre-processing 

 
The pre-processing of the plain data obtained from the hospital is a 
very important step. The data is saved in CD-ROMs during the 
treatment procedure as a cineangiogram. Dealing with the data in 
its original moving DICOM format is quite difficult; therefore, the 
data is converted into a series of 2D BMP (bitmap) angiogram 
images. Later on, each single-view angiogram image can be used 
at a time (input) to extract the output (coronary artery trees). 
Currently, there are many types of software available to convert 
moving DICOMs into BMP images. The popular software which 
works well to read DICOMs is the DICOM viewer. There are 
numbers of DICOM viewers available on the Internet such as 
DICOM viewer, Sante DICOM viewer, Philips DICOM Viewer 
R2.5L1 SP4 and others. The DICOM viewer software reads moving 
DICOMs and transfers those into still BMP angiogram images. 
Finally, the process of separating the still angiograms from each run 
of each cineangiogram starts from the period of injecting the 
contrast dye into arteries until the end of the procedure. The 
optimum angiogram image that shows the complete coronary artery 
network is chosen - according to the scope of this paper – to serve 
as subsequent input to the extraction algorithm. The number of 
images is different from one run (a sequence of motion images from 
a specific angle) to another because it depends on the time each 
run consumes. The complete process of angiograms separation 
from moving DICOMs is illustrated in Figure 2. At the end of data 
pre-processing, a series of single-view angiogram images are 
obtained for each patient. Images belonging to each patient are 
saved individually in order to use the images in the extraction 
process. It is important to enhance the images after each pre- 
processing procedure by removing the noise that might occur 
through the pre-processing stage and also to enhance the contrast. 
Fortunately angiograms, due to the nature of their imaging systems 
making use of X-ray radiation do not suffer much from 
contamination by noise except for some unnoticeable White 
Gaussian noise that might occur through the pre-processing stage. 
Angiogram noise removal, if any such noise exists is done at the 
step of coronary artery tree extraction through a smoothing 
process. However, there exists a problem in the contrast 
enhancement of the vessels in the angiograms. This issue is such a 
challenge in angiograms because of the similarity in contrast 
between some blood vessels and the background after the 
completion of injecting the contrast dye. 

Figure 3 illustrates three examples of angiogram images showing 
the contrast similarity between parts of the background and vessels 
indicated in the green boxes. Therefore, contrast enhancement is 
important for highlighting and extracting coronary arteries from 
angiograms. The proposed coronary artery trees extraction 
algorithm in this paper performs the contrast enhancement 
automatically by using Gaussian filter. Therefore, no extra software 
is needed in this work to enhance the contrast and the original 
angiogram can be input directly into the coronary artery tree 
extraction algorithm. In summary, the pre-processing stage is a vital 

process to ensure the success of the following stages of the 
methodology. The optimum angiogram nomination is a necessary 
step in the extraction process to guarantee accurate extraction 
process. Therefore, this step is responsible for automatically 
choosing the optimum angiogram image among the set of 
angiograms of each patient. Then, this optimum image will be the 
input for the coronary artery trees extraction algorithm. The 
automated optimum angiogram nomination proposed algorithm will 
be explained in the part of this paper that deals with angiogram 
images. 

 
Gaussian matched filter 

A matched filter, the Gaussian filter shows the appearance of the 
desired signals. In this paper we propose using a Gaussian function 
as introduced by Canny (1983), for a blood vessel profile that is 
further extended to 2D by assuming that a vessel must have a fixed 
width as well as a fixed direction and with short length. Since, in 
reality, vessels are seen in any orientation, a set of 2D profiles of 
segments in equiangular rotations must be used. Eichel et al. 
(1988) and Hoover et al. (2000) applied kernels for matched filters 
by using twelve sets of 16 × 16 pixel kernels. Further details 
regarding computation of the actual values in the kernels can be 
found in Eichel et al. (1988) and Hoover et al. (2000). For our 
purposes, we applied a Gaussian matched filter to an angiogram by 
convolving it with all of the twelve kernels. The filter is essential in 
the vessel extraction as well as segmentation. However, we 
propose to use a controllable variance factor in the Gaussian 
function to segment our angiogram images. The idea comes from 
the strong relationship between the Gaussian response influences 
over images which can produce the threshold value automatically 
for an image. The Gaussian function is the function that is 
responsible for image intensity, however, changing the variance 
throughout the Gaussian filter equation will change the response 
upon that image and as a result the threshold value will be 
determined according to that response. In addition, choosing to 
control the variance value is because this value controls the width 
of “bell” shape of the Gaussian output, therefore, we will be 
controlling the thresholding value itself. Figure 4 shows the 
Gaussian bell shape for different variance values. 

 
Threshold examination 

The basic task of the algorithm presented in this paper is to 
examine the Gaussian response over images. For each 
examination, a criteria set is tested in order to determine the 
threshold, and eventually to decide whether the area being 
examined belongs to a blood vessel (Hoover et al., 2000). The 
flowchart of threshold examination and vessel extraction is 
presented in Figure 5. The pixels will be set in a queue and 
initialized, where each point will be used for the examination. When 
the examination is completed, and if the segment is found to be a 
vessel, then its endpoints is added to the queue. Accordingly, 
different examinations (and therefore different thresholds) could be 
applied to the whole image. The previous algorithm is used to 
extract blood vessels within retina images. However, it inspired us 
to come up with our algorithm of angiograms. Our contribution is to 
improve the functionality of their algorithm to become a coronary 
artery trees extraction algorithm. We should keep in mind that in 
angiograms we are dealing with two intensity values, vessel and 
background. According to our measurements, the vessel intensity 
always larger than backgrounds ones since vessel are filled of 
contrast dye at the moment of angiography process. We propose to 
use the Gaussian function with variable controllable variance (σ2) in 
order to efficiently extract blood vessels using angiograms. 
Angiograms are a type of X-ray images that has low signal to noise 
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Figure 2. Process of separating still BMP angiogram images from moving DICOMs. 



  
 

 
 

 

  
 

Figure 3. Examples of angiograms with contrast similarity between the vessels and the background. 

 

 

 

Figure 4. Gaussian bell shape with different variances ( , ,  ) (Ribeiro, 2004). 

 

 

ratio, that is, it does not provide much information unless they are 
pre-processed to highlight objects and remove backgrounds. There 
is a considerable difference in the intensity among an angiogram’s 
pixels. We attempted to designed our algorithm keeping in mind 
previous information and came out with algorithm presented in 
Figure 5. 

Details of the flowchart in Figure 5 are listed in the following 

steps: 
 

1) Start the algorithm by input of an angiogram image. 

2) Convolve the image with Gaussian filter while the variance ( ) 

value is been set up in the range of 1 ≤  ≤ 2. This process is to 

clear the image from any noise (if any), enhance the contrast and 
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Figure 5. Flowchart of threshold value examination and coronary artery trees extraction. 

 

 

examine the filter’s response upon the image which will determine 
the threshold of each pixel in the image. The Gaussian function is 
shown in Equation 1. 

 

 
Where a, b > 0 are constants, σ2 is the variance and x is an image’s 
pixel. 

3) Check the response of the Gaussian filter on each pixel of the 
image. If it was good, that is, the image is clear and no loose of 
information (vessels) as shown in Equation 1, then the response of 
the filter per each pixel can be set, internally in the program, as the 
threshold value for that pixel. If the response was poor and there is 
amount of information loosing, then repeat step 2 which will set a 

new value for  in the specified limit. This process will be done for 

pixels which are part of vessels but if they were part of the 

background then they will be omitted. 
4) The set threshold values of pixels will be used to automatically 
segment them and the complete coronary artery tree will be 
extracted as the final step. 

5) Display the extracted coronary artery tree in a binary format 
standing alone or superposed with the original angiogram. 

 

 

Variance (  ) value 

 

The variance value was chosen to be in the range of 1 ≤  ≤ 2, 

why? We have done a series of experiments regarding the issue of 

Gaussian filter response and how it can be good enough to extract 
vessels. That inspired us to use the value of the variance to control 
the Gaussian response knowing that it is an important factor in the 
Gaussian equation. Even thought the value is important, but it 
cannot be open to all values and we had to test the best values. 
Our experiments proved that Gaussian filter can response well with 

angiograms when the value of  is in the limit of 1 ≤  ≤ 2 and as 

a result the extraction process would be efficient. The efficiency of 

vessel extraction can be determined according to the clear and less 
noise extraction process. Vessel extraction meant to highlight the 
vessels only and remove the background; therefore, if the response 
of Gaussian filter was poor, then the extraction process will detect 
part of the background as vessels which will be called false alarm 



  
 

 
 

 

   

 

1 ≤  ≤ 2 

 

Figure 6. Some examples of extracted coronary artery trees in different  limit values. the extracted trees are 

superposed on the original images with red circles to show false alarms (noise). 

 

 

(noise) in this case. To validate our finding, we have done a 
questionnaire to evaluate the efficient illustration output of coronary 
artery trees extraction from angiograms. The questionnaire will be 
detailed in the results and discussion section. Figure 6 shows 

examples of images were extracted in different  values. The 

figure shows three columns of images and we can notice that when 

the value of  falls in the proposed limit (1 ≤  ≤ 2), the 

extraction could be more efficient, that is, less noise. Now, are all 

threshold values generated within the limit 1 ≤  ≤ 2 can work well 

without any noise occurrence? 

First the threshold value will depend on the Gaussian filter 
response and secondly, some noise may occur within our proposed 
limit but it will always be less noise that may occur within other 
limits. 

 
Lighting effect 

 
One of the difficulties that may obstruct good object extraction in 
any kind of images is the lighting. The lighting in images has always 
been considered as a big challenge. The light value could be added 
to the values of the pixels but this would cause problems. Light 
elimination and approaches involved in this issue are not our 
concern here because lighting has no effect on angiograms 
because X-rays are the main source used to capture angiograms. 
So, what is the lighting that appears in some angiograms? 
According to radiologists and cardiologists from PPUKM hospital 
(the hospital that provided the data for us), the light areas that 
appear in some parts of angiograms are the effect of X-ray 
reflections from the Operating Theatre (OT) table that is placed 
under the patient through the imaging process. As explained earlier, 

the C-arm system is set to different angles as part of the coronary 
angiography procedure. In some of the specified angles, the X-ray 
source may shoot outside the patient’s body and hit the table or the 
radiation may hit some parts of the body without thick organs or 
bones and then pass through to the table. In this case, the Charge- 
Coupled Device (CCD) camera captures the reflections of the 
radiation from the OT table and light areas appear in the 
angiograms. Therefore, according to the effect of radiation, the 
intensity of the pixels will be changed to different levels and so 
affect the extraction process. Thus, the importance of a Gaussian 
filter to concentrate on vessel extraction in order to clear 
angiograms of noise (if any) and enhance the intensity levels 
(attenuate the lighting effects). Figure 7 illustrates some 
angiograms with x-ray reflections and Figure 8 shows the 
differences in the intensity levels using histograms. Therefore, we 
can say that Gaussian filter is an essential step in the pre- 
processing because besides its response is the main factor to 
determine the threshold value, it can also clear the angiogram from 
any noise (if any) and enhance its intensity levels as well. 

The x-ray reflection can obstruct vessels extraction process in 
the absence of Gaussian filter. We can summarise the Gaussian 
filter advantages in three points: 

1) Threshold value determinant, 
2) Enhance intensity value levels, that is, lessening x-ray 
reflections, 
3) Clear the image from any noise (if any). 

 
Usually, angiograms are not contaminated by noise because of the 
special environment of image capturing which involves x-ray only. 
However, noise may occur through the pre-processing step. Data 
comes from hospitals in CD-ROMs and we need to extract still 



  
 

 
 

 
 

 

  
 

 
Figure 7. Angiogram images with x-ray reflections. 
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Figure 8. Different intensity levels for four different angiograms shown by histogram. 

 

 

angiograms out of them. The pre-processing step of separating 
moving angiograms into still images may cause some noise (White 
Gaussian Noise). Therefore, different examinations and, 
accordingly, different thresholds can be applied throughout the 
extraction process until Gaussian response is good and 
subsequently the extracted coronary artery tree. The tiny vessels 
extraction is a challenging process because their intensity values 
could be very close to their neighbours (background). Our algorithm 
in this paper could efficiently extract the whole coronary artery tree 
including tiny vessels. 

Angiogram images 
 

It is worth mentioning briefly that the data set of angiograms was 
used to perform the algorithm was proposed in this chapter. The 
dataset which included 100 angiogram images was obtained from 
PPUKM hospital, Malaysia. As mentioned earlier, data were saved 
in CD-ROMs and the pre-processing stage was used to extract a 
set of still BMP angiograms of 512 × 512 pixels size and 24-bit gray 
scale levels. The optimum angiograms, the input for the vessel 
extraction algorithm were chosen to build our dataset according to 
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three categories: 1) most of the referenced strategies only 
demonstrated normal vessel appearances that are easy to observe, 
2) abnormal vessel appearances that were recommended for 
clinical usage, and 3) both normal and abnormal cases that were 
suitable for evaluation of the performance of the proposed 
algorithm. Therefore, the optimum angiograms in our dataset 
should view as much as possible the complete coronary artery trees 
with normal and abnormal arteries. Choosing the optimum 
angiogram image from a set of images is a vital process in the 
coronary arteries extraction algorithm to guarantee accurate output. 
The optimum image must be having the following attributes to be 
nominated as optimum; less noise, less bright spots (X-ray 
reflections) and homogeneity image intensity values. The concerns 
of noise and bright spots of X-ray reflections can be solved by the 
Gaussian filter of the extraction algorithm itself afterwards. As for 
the homogeneity of image’s intensities, it was not that easy to solve 
this problem since we are dealing with kind of images that have 
different intensities from one angiogram to another depending on 
the angle of imaging. Therefore, a preliminary experiment was done 
in this chapter to guarantee choosing the optimum image 
automatically by the program and without any user interference. 

The experiment was done to mimic the way of choosing the 
optimum image visually by bare eyes. The bare eyes check for the 
complete appearance of coronary artery networks plus the three 
factors that were mentioned earlier, noise, bright spots, and 
homogeneity, before announcing the optimum. The experiment 
adopted the histogram technique to act as the main factor of 
choosing optimum angiograms. The histogram technique is one of 
the powerful techniques for images’ information extraction, 
frequencies and intensities representation (Gonzalez et al., 2004). 
The histogram in a range (0 to 255) is defined in the discrete 
Equation 2 as follows: 

 
(2) 

 
Where  is the kth intensity level in the interval (0 to 255) and  is 

the number of pixel in the image whose intensity level is . 

The experiment was handled on two phases; first,  with 
segmentation and secondly, without segmentation. The purpose of 
proposing to use the segmentation process in the experiment was 
to extract the arteries from images and calculate the histogram for 
them only without focusing on the background. However, using 
segmentation will cost us more processing time and results will be 
compared with the visually chosen images to judge using this step. 
As for the segmentation (vessel extraction) part of experiment, the 
proposed algorithm in this chapter was used to segment the original 
angiograms in order to calculate their histograms after this. 
Therefore, the histogram will be calculated for the coronary arteries 
only because they are the objects under consideration and in the 
optimum image they should occupy no less than 50% of the 
angiogram. The steps of conducting the preliminary experiment with 
the segmentation part are listed as follows and the framework was 
illustrated in Figure 9: 

 
1) Input a set of angiograms as they were separated from one Run 
(cineangiogram), 
2) Segment the angiograms and extract the gray scale arteries 
only, 
3) Calculate the histograms for the segmented angiograms, 
4) Find the average histogram for all histograms in step 3, 
5) Calculate the Sum Square Error (SSE) for each histogram in step 
3 with the average histogram in step 4, 
6) The optimum angiogram image will be the one with the minimum 
SSE. Thus, minimum SSE is for the closest image’s histogram to 
the average histogram. 

Angiograms are first separated from each cineangiogram, as it 

was mentioned earlier in the pre-processing of data in this study, 
then the test will be applied of the preliminary experiment. SSE is 
calculated from Equation 3 as follows (Searle, 1971): 

 

 
Where n is the number of angiograms in one set,  is the 

histogram of an angiogram and  is the average histogram of all 

angiograms. 

The assumption of using the average histogram came from 
assuming that when the complete coronary artery tree appears in 
an angiogram image, it will occupy at least 50% of the frequencies 
of that image. Therefore, calculating the average of histograms and 
comparing it with each image’s histogram (SSE) can be good 
enough to nominate the optimum image. The results of choosing 
the optimum image while the segmentation process is included are 
acceptable compared with the visually chosen images. However, 
the process is time consuming that each image is required to be 
segmented separately. We eliminated the segmentation part from 
the experiment and calculated histograms for the complete set of 
pixels for each angiogram image. We then compared the results of 
the optimum images with the visually chosen ones. Therefore, 
Figure 9 illustrates the same steps of the experiment that were 
shown in Figure 10 except for the segmentation part. The proposed 
algorithm’s performance was evaluated on the basis of 
segmentation of the major vessel correctly, and without premature 
termination during the extraction process. Although, in normal 
cases, the separation process between vessel and non-vessel 
(background) pixels in the extraction procedure is better even 
thought there is no much difference between normal and abnormal 
(blocked) vessels as shown in Figure 11. The classification of most 
pixels is often clear to a human observer. However, in contrast with 
Hoover’s algorithm (Hoover et al., 2000) where some of the pixels, 
for example, those on the vessel’s boundary, those on the small 
vessels, and those on vessels near pathology are classified less 
easily. Our algorithm easily and efficiently extracts vessels in the 
whole angiogram. 

 

 

RESULTS 
 
To evaluate our proposed algorithm using a computer 
with Windows-XP, 3G-RAM and 1.5 GHz, we applied on 
a clinical data set of 100 angiogram images. The 
application was to extract the coronary artery tree out of 
each angiogram image. Later on, we validated the results 
of our algorithm by comparing it with two different 
approaches using two ways. First of all, the experiment of 
nominating optimal angiograms is applied as in Figures 9 
and 10; and the results shown in Table 1 together with 
the results of the nomination of the optimum images 
using the bare eyes (the visual part). The images used in 
the experiment were taken from 15 different runs 
(cineangiograms). In Table 1, it can be clearly seen that 
the results of the experiment without the segmentation 
part are closer to the visually nominated results than the 
results of the experiment when the segmentation part 
was included. Table 1 includes five columns. The first is 
for the number of the Run, the second is for the number 
of images per each Run, the third is for the visually 
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Figure 9. The framework of optimum angiogram image nominating with the segmentation part. 

 

 

chosen images from the total number of images per Run, 
the fourth is for the results of the experiment with the 
segmentation part, and finally the fifth column is for the 
results of the experiment without the segmentation part. 
The criterion of visually chosen images depends on 
visual aspects such as full coronary artery network, not 
poor angiogram and less x-reflection spots. The second 
column in Table 1 shows the number of angiograms in 
each Run (frames per each cineangiogram). Same goes 
for the 3rd, 4th and 5th columns whereas each number 

refers to the index of an angiogram in the series of 
frames per each Run. 

Figure 12 illustrates a comparison between the results 
of the experiment in Figures 9, 10, and the results of the 
visual part. Figure 12 clearly illustrates that the curve of 
‘Optimal image without segmentation’ has greater 
similarity to the curve of ‘Visually Optimal’ than the curve 
of ‘Optimal image with segmentation’. This proves that 
the experiment without the segmentation part can give 
better results (closer to the visual part) and of course 
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Figure 10. The framework of optimum angiogram image nominating without the 
segmentation part. 

 

 
Table 1. Results of optimal image nomination. 

 

Run # No. of images/run 
Visually 

optimal 

Optimal image with 

segmentation 

Optimal image without 

segmentation 

1 44 32 9 21 

2 45 27 29 22 

3 47 30 23 25 

4 32 20 18 32 

5 31 20 28 23 

6 34 14 7 19 

7 44 17 14 13 

8 46 23 5 15 

9 45 18 15 3 

10 85 48 45 46 

11 56 18 18 15 

12 36 18 22 15 

13 38 22 30 29 

14 77 26 56 28 

15 50 18 41 42 
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Table 2. The distribution of 10 angiograms in the questionnaire’s slides. 

 

Question / image 
           Limits of variance   

σ
2
 < 1 1 ≤ σ

2
 ≤ 2 σ

2
 > 2 

1 a b c 

2 a c b 

3 b a c 

4 a c b 

5 c b a 

6 a b c 

7 b a c 

8 c a b 

9 c b a 

10 a c b 

 
 
 

 

 
 
 
 
 
 
 

 
(a) 

 

 

 

 

 

 

 

 

(b) 

Blockage in the 

main artery 

 
Figure 11. Examples of angiogram images showing segmentation, (a) normal vessels, (b) abnormal vessels. 

 
 

 

Figure 12. Comparison between results of visually nominated optimal images, results of the experiment with segmentation part and 
results of the experiment without segmentation part. 
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Figure 13. Example from the questionnaire of how to choose the best output image. 

 

 

provide greater savings in processing time. However, the 
experiment designed as shown in Figure 10 is a good 
way to automatically choose the optimum image for the 
coronary artery trees extraction algorithm without any 
user interaction. We conducted an experiment of setting 
a questionnaire to validate the efficient illustration output. 
The questionnaire was held in one room (same 
environment) and 12 professional participants were 
attended to validate the output. We showed the 
participants 10 different slides each with 4 angiograms. 
First image is the original angiogram and the rest 3 
images are its coronary artery trees extracted in three 
different variance values ( , 1 ≤  ≤ 2, ). As 

we mentioned earlier about the variance value and how it 
can affect the Gaussian response and threshold value 
itself and we mentioned that our proposed limit of 
controllable value is 1 ≤  ≤ 2 that can give better 

coronary artery tree extraction in angiograms. The 3 
extraction images were marked by letters ‘a, b, c’ and the 
participants had to choose one of them which represent 
the better extraction output according to his expertise in 
medical imaging and medical applications. To guarantee 
the impartiality, our images which were processed 
according to our proposed variance limit were located 
randomly among the 3 images. The questionnaire 
included 10 angiogram images. Figure 13 shows an 
example  of  how  to  choose  the  best output image 

presented to participants in the questionnaire. The best 
output image that will be selected is the one with less 
false alarms and focuses on extracting the main coronary 
arteries. As we can notice in the figure that image (a) is 
the one which represents the best output of extraction 
and therefore we will choose it to be the supported one 
and supported limit of variance. 

In order to calculate the validation rate of participants’ 
support to our proposed limit of thresholding, the 
questionnaire results were analysed as follows. First, in 
Table 2, we presented how the images (a, b, c) were 
distributed in the slides according to each limit of 
extraction. Next, in Table 3 we showed the selections 
(results of supporting for our proposed limit) of each 
participant. Finally, in Table 4 we calculated how many of 
the participant’s selections supported our limit (1 ≤  ≤ 

2). As a final step of the analysis, the validation rate was 
calculated from the results of Table 4 and according to 
Equation 4. 

 

 
Where n is the number of participants. 

The validation rate can be calculated from the statistical 
Equation 4 aforementioned and depending on the results 
of Table 4 as follows: 



  
 

 
 

 
 

 
Table 3. The supported images for each participant. 

 

Participant Question / Image Supported image 

 1 b 
 2 c 
 3 a 
 4 c 

1 
5 b 

6 b 
 7 a 
 8 a 
 9 b 
 10 c 

 
1 b 

 2 c 
 3 a 
 4 c 

2 
5 b 

6 b 
 7 c* 
 8 a 
 9 b 
 10 c 

 
1 b 

 2 c 
 3 a 
 4 c 

3 
5 b 

6 b 
 7 c* 
 8 b* 
 9 b 
 10 c 

 
1 b 

 2 c 
 3 a 
 4 c 

4 
5 b 

6 b 
 7 a 
 8 a 
 9 b 
 10 c 

 
1 b 

 2 c 

5 
3 a 

4 c 
 5 b 
 6 c* 



  
 

 
 

 
Table 3. Contd 

 

 7 c* 

 8 a 

 9 b 

 10 a* 

 
1 b 

 2 c 

 3 a 

 4 c 

6 
5 b 

6 b 
 7 a 

 8 a 

 9 b 

 10 c 

 
1 b 

 2 c 

 3 a 

 4 c 

7 
5 b 

6 b 
 7 a 

 8 a 

 9 c* 

 10 c 

 
1 b 

 2 c 

 3 a 

 4 c 

8 
5 b 

6 b 
 7 a 

 8 a 

 9 b 

 10 c 

 
1 b 

 2 c 

 3 a 

 4 c 

9 
5 b 

6 b 
 7 a 

 8 a 

 9 b 

 10 c 

 
10 

1 b 

2 a* 



  
 

 
 

 
 

 
Table 3. Contd 

 

 3 a 

 4 c 

 5 b 

 6 b 

 7 c* 

 8 a 

 9 b 

 10 c 

 
1 b 

 2 c 
 3 a 

 4 c 

11 
5 b 

6 b 

 7 a 

 8 a 

 9 b 

 10 c 

 
1 b 

 2 c 
 3 a 

 4 c 

12 
5 b 

6 b 

 7 a 

 8 a 

 9 a* 
 10 b* 

*: unsupported selection. 

 
 

 
 

 
 
n = 12, the number of participants. 

 

 

 

 
The validation rate shows that medical imaging and 
applications experts highly support our proposed limit of 
variance to produce the threshold limit that can give 
better output with it. The support rate was 90.84% which 
can prove the robustness of our proposal. The extraction 

process was quiet fast as it consumes between 14 to 15 
s to extract the whole coronary artery tree in angiogram 
images of 512 × 512 pixels size and 24-bit gray-scale 
levels. We applied the algorithm on a data set of 100 
images for vessel extraction and calculate the time; and 
Table 5 presents the results for 20 images of them. The 
whole images were processed in proposed limit of 
variance 1 ≤  ≤ 2. Figure 14 illustrates the processing 

time for results in Table 5. 

 
Comparison with previous work 

 
Most previous algorithms and computer models focused 
on centerline and contour extraction of vessels. They 
ignored most of the details that involve tiny vessels and 
their bifurcations. As we mentioned in the introduction of 
this  paper  also,  algorithms  were  divided into three 



  
 

 
 

 
Table 4. No. of supported selections per each participant. 

 

 Participant  No. of supported selections  

1 10 

2 9 

3 8 

4 10 

5 7 

6 10 

7 9 

8 10 

9 10 

10 8 

11 10 

 12  8  

 
 

 
Table 5. Processing time to extract coronary artery trees. 

 

 No. of image  Extraction time/s  

1 14.6943 

2 13.9604 

3 14.1240 

4 13.1873 

5 15.2917 

6 15.2818 

7 15.7903 

8 15.0156 

9 15.2247 

10 15.5708 

11 14.3477 

12 14.4099 

13 14.3453 

14 14.3423 

15 14.7318 

16 14.6505 

17 14.3586 

18 14.5543 

19 14.3339 

 20  14.3291  

 

 

categories in terms of processing images to extract 
vessels. The first part deals geometrically with images, 
the second deals with intensity and the third and last 
combines both ways. Our work involves with intensity to 
extract vascular arterial trees from angiograms because 
our algorithm segment the image depending on the 
threshold value going to be generated from Gaussian 
response and variance value. In this section, we are 
going to compare our algorithm with two previously done 
approaches in terms of qualitative and quantitative 
samples. First, we used hand-labelled annotations on 20 

images of our data set to prove the accuracy of our 
results of extraction. Three angiogram images are 
presented in Figure 15 illustrating our hand-labelling 
superimposed with original angiograms. The labelled 
vessels are what we could see that contrast of vessels 
comes similar to background in most parts of arteries. By 
comparing the results of Figures 15 and 16, we can 
notice that Figure 16 illustrated more accurate extraction 
process that the entire main artery have extracted 
accurately with all their bifurcations. Figure 16 illustrates 
three examples of extraction in angiograms. The three 
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Figure 14. Extraction time in seconds for a sample of 20 angiograms. 

 

 

 

 

 
Figure 15. Examples of hand-labeling annotations. 
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Figure 16. Examples of vessel extraction using our algorithm. 
 

 

angiograms were processed in variance values 1.5, 1.1 
and 1.8, respectively. Next, we compare our output with 
the algorithm in Wang et al. (2005). Figure 17 illustrates 
the output for both and from that we can demonstrate the 

following: 
 
1) Algorithm in Wang et al. (2005) used sequences of 
DSA images while ours adopts the plain 
angiocardiography. We should know that extraction from 
plain angiograms is a larger challenge since gray scale 
values between the vessel and its background are similar 
most of the time. In addition, the plain angiogram’s 
background has different gray scale values, shadows and 
reflection of x-ray (lighting). 
2) In the previous algorithm and in each image, first, the 
centerlines would be extracted and next would be the 
contours of vessels. In our algorithm, whole vessel would 
be extracted for the whole image, that is, the result will be 
a full coronary artery tree (network). 

 
The previous processing time was 10 s per image on a 
PC with 1.5 GHz CPU and 512 Mb RAM and our 
algorithm took between 14 to 15 s on a PC with 3 GB- 
RAM and 1.5 GHz CPU. Our time is longer in few 
seconds because previous algorithm was devoted for 
centreline and contour extraction and ours for a whole 
coronary artery tree with full network (step 1 
aforementioned). The previous algorithm in some images 
cannot extract the whole artery network in Figure 17. In 
contrast, our algorithm can start from the main artery tree 
stent with full network extraction until the end. Finally, the 
algorithm in Li et al. (2008) has been compared with our 
algorithm. The previous algorithm was applied on data of 
theirs and data of ours and we discussed the results that 
are shown in Figure 18. Results shown in Figure 18 were 
obtained from applying algorithm in Li et al. (2008) on 
samples of theirs and our data respectively. The first and 
second rows illustrate results of two images, synthetic 
and real object image respectively. In the first one, the 
background is darker than the object (vessel). 
Meanwhile, in the second image, the object is darker than 
the background. In both images, the extraction was 
efficient with no disturbance and with a number of 
iterations in 150 and 300, respectively. The third and 
fourth rows in the figure are for the results from our data 
images. Same as before, the image in the third row has 
dark background while image in the fourth row has darker 
vessel. We can easily notice that both rows of results 
obtained from our data were not efficient and extraction 
got a lot of disturbance (background was detected as a 
vessel). 

The extraction was done in 50 and 300 iterations 
respectively. We can clearly demonstrate that the method 
of this paper is performing better in angiocardiography 
than algorithm in Li et al. (2008). 

 

 
DISCUSSION 

 
Vessel extraction is an important task to guide physicians 
through vessel treatment procedures and which results in 



  
 

 
 

 
 

 

 
 

 

(b) 

Figure 17. Comparison between a) Wang et al. (2005) output and b) output of our algorithm 

 
 

more medical benefits. However, the extraction approach 
in this paper is different from previous works. This paper 
improved retina images of previous algorithm to extract 
the complete coronary artery trees. The extraction is for 
the main arteries plus the small branches. Currently, 
angiography images are preferable by specialists since 
they are able to provide online monitoring of blood 
vessels. Vessels extraction process is the first vital step 
in any medical pre-processing because of other technical 
approaches that might rely on it in future. The 3D 
rendering of coronary arteries is one of those important 
approaches. There are strong evidences in the presented 
results  that the proposed algorithm  in this paper is 

accurate in extracting coronary arteries. All the achieved 
experiments clearly demonstrated that the proposed 
algorithm has the power and ability to extract the 
complete arteries and their bifurcations. In addition, the 
processing time of extraction is short compared with 
other previous algorithms. The most convincing way for 
representation of the proposed algorithm is obtained 
through observation of its iterative dynamic operation. To 
achieve this purpose, an application in Windows O/S 
using an executable file is made available that shows the 
process of the real-time execution of the algorithm. The 
algorithm offers clinical benefits and considers a helpful 
tool  to  make  physicians  work  easier  by  better 
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Figure 18. Results of method in Li et al. (2008) which was applied on four images. First and second rows had 
shown images of synthetic and real images of the same data used in the previous method. Third and fourth 
rows had shown images of our vascular angiography images. 

 

visualisation of coronary artery trees and in a short time. 
One aspect of the approach that has been reported 
earlier in Hoover et al. (2000) is the evaluation of the 
connectedness property. By design, their approach 
produced a labelling (right or wrong) of the continuous 
segments. 

The basic thresholding algorithm is likely to produce 
small groups of isolated pixels. Although, these pixels 
might in fact be correctly classified, their utility for 
measurement is probably limited. The proposed algorithm 
in  this  paper  solved  this  problem  in  terms of 

connectedness. 

 
Conclusions 

 
With the increased need for the use of real-time 
angiogram images, it became importantly to analyze and 
extract as much information as possible from them. 
Angiograms are a helpful tool to physicians in many 
cases, especially if they have been pre-processed to 
highlight  objects  (vessels)  out of them. We have 



  
 

 
 

 

 

proposed in this paper a robust algorithm for coronary 

artery trees extraction. The algorithm depends on the 

variance factor - controllable value (1 ≤  ≤ 2) - in 

Gaussian equation to affect its response which can lead 

to extract suitable threshold value for the image under 

consideration. Specialists may use this approach for 
diagnosing the abnormality in vessels purposes, that is, 
by measuring the thickness of healthy, blocked, including 
all the tiny vessels, and by managing to insert a stent 
through the blocked vessels. The core of the algorithm, 
vessel extraction was validated by using hand-labelling 
ground truth segmentation annotations of 20 images and 
the results matched 98% of the extracted images. In 
addition, the results were validated by conducting a 
questionnaire meant to show the output to 12 medical 
imaging experts. The validation rate was 90.84% support 
from them to the presented extracted images, that is, the 
variance and threshold limit itself. Finally, the algorithm 
was fast in terms of processing time that it takes between 
14 to 15 s per image. In addition, it worked well on 
angiograms; however, it can be elaborated to work with 
other types of medical images that have different features 
and structures. As a final perspective, using a masking 
process on the original image superposed with the artery 
tree can extract the tree in gray scale format. This would 
help in further future work for a coronary artery tree 3D 
reconstruction. 
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