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Abstract 
 

This paper presents combination of hydraulic modelling and multi-criteria aiding approaches in water loss 
management using Alexandra township, Johannesburg, South Africa as case study. Hydraulic analysis of 
Alexandra’ water losses as a component of non-revenue showed an increases from 87.02% to 95.21% in 2016 and 
2022.The authors used PROMETHEE-II'D-Sight' built-in sensitivity analysis software to evaluate decision makers' 
strategic preferences to finally integrate group decisions for water-loss reduction technique. For this purpose, six 
strategic objectives and ten evaluation criteria abstracted from the water utility’ strategic thrust were evaluated by 
eight decision-makers by employing PROMETHEE II’ weighted-preference outranking method to draw group 
divergence. The study objectives criteria for decision makers were characterized by environmental, institutional, 
technical capacity, public health, socioeconomic and financial governance. Applying a sequencing water loss 
hydraulic prioritization supported by decision-makers, a multi-criteria decision-analysis method explicated 
systematic preference-outranking, normalizing and elicitation of single-sided decisions into a combined global 
group-decision. The study' results expounded that high preferred integrated water loss reduction options for water 
managers should aim to enhance (i) technical capacity, (ii) financial reliability, (iii) socioeconomic and (iv) 
institutional governance objectives. The research shows how that decision-theory model can be integrated with 
practical hydraulic engineering research approaches. 
 
Keywords: Decision-Theory, Evaluation Criteria, Multi-Criteria Decision Technique, Water Loss Management, Strategic 
Objectives, PROMETHEE II, D-Sight, Water Supply Systems. 
 
 



1. INTRODUCTION 
 

Water losses in the water supply networks (WSN) have 
grown particularly in many developing nations. Water loss is 
a primary drawback for the performance and economic 
sustainability of water utilities and is a key indicator of WSN 
inefficiencies. Water loss reduction is one efficient measure 
for reducing water shortage. Managing water loss. within the 
water supply system has become a crucial concern 
nowadays (Zyoud and Fuchs-Hanusch 2019). Emphasis is 
placed on ensuring the water meter's accuracy, water 
distribution stability as well as physical and apparent water 
losses. Accessibility to sufficient safe and good drinking 
water at an affordable cost is among the basic human rights. 
However, many water utilities are confronted with water 
shortages (Helmecke et al., 2020). In other studies Zese et 
al., 2021) highlighted water losses due to pipe bursts, 
leaking meters and even domestic household leakages. In 
most developing countries, there has been a failure to 
provide adequate water supply to the consumers, because 
of high water losses within WSS. Many studies have 
comprehensively confirmed that some countries have 
record water losses as a component of non-revenue water 
(NRW) as high as 50% of the total system input volume 
(SIV) in the water distribution network, and early 70% of 
water loss could be caused by poor network construction 
and design, exposed pipe damage, pipe theft, aging of pipes 
and poor sealing connection (Boztaş and Özdemir 2019 and 
Shushu et al., 2021).  
 
Furthermore, the water-loss within the WDS is linked to 
environmental, social, public health and economic effects. 
Besides this, the WSS water losses minimize revenue, 
inflate the firm's operation and maintenance costs and 
potentially deteriorate water quality (Chini and Stillwell 2018; 
Ougougdal et al., 2020 and Mathye et al., 2022a). 
Therefore, water loss management is assumed to be the 
primary objective for effectively protecting scarce water 
resources (Oberascher 2019; Kisakye et al., 2022). At an 
economic scale, water losses reduce water utility revenue 
while increasing high production, transmission and 
production costs Al-Washali et al., 2017; Chini and Stillwell 
2018 and Mathye et al. 2022a). Some studies have 
confirmed that prevailing socio-economic factors such as 
population growth, poverty, urbanization, increasing 
domestic demand, continuous industrialization and limited 
financial capacity contribute to water losses (Ougougdal et 
al., 2020). Most developing countries have had water losses 
associated with socio-economic factors (Ilaya-Ayza et al. 
2017 and Mathye et al., 2022a). Furthermore, aging 
infrastructure, limited financial resources, poor active leak 
control methodologies, reduced speed of repair action, poor 
quality repair, lack of new pipeline upgrade, poor customer 
awareness of water accountability and background 
leakages are among the factors that cause high water 
losses. Therefore, many evolving pressure-driven and 
hydraulic modelling tools and methods were engineered to 

further manage water losses (Mathye et al, 2022a). These 
tools differ by complexity level and vary in software 
development, benchmarking and performance indicators 
(PI). Because no single water loss method or tool alone is 
sufficient to significantly reduce water losses (Al-Washali et 
al., 2017). It is therefore important that water managers 
select and implement well-structured, systematic and 
transparent water loss reduction tools in complex water loss 
reduction scenarios. Transparent and systematic water loss 
tools integrate the roles of all relevant stakeholders and 
decision-makers (DM) involved in the decision-support 
objective formulation concerning water loss reduction (Al-
Washali et al., 2017 and Alves et al., 2018). Multi-criteria-
decision analysis methods (Alves et al., 2018) to evaluate 
water losses in the water distribution system may have the 
potential to contribute to new concepts of systematic 
decision support guidelines for water loss reduction. MCDA 
is a tool designed in the decision theory stream to resolve 
operational research problems having finite decision option 
counts (Abdullah et al, 2021). Decision-makers assess and 
rank weights depending on evaluation criteria (EC). Discrete 
MCDA approaches account for different ranges of 
qualitative and quantitative criteria above financial criteria 
and can handle uncertainties during their optimized 
decision-making process (Pematangsiantar, 2017). An 
MCDA framework can provide rational, objective, 
transparent, consistent and well-structured solutions 
towards complex decision challenges in the water resources 
planning and management sector (Ilaya-Ayza et al., 2017).  
 
The MCDA technique can complement measures of 
quantitative and qualitative criteria beyond a single criterion 
that can, for example, be aimed at financial savings (Moon, 
2020). According to Bera and Kartic (2019), most water 
utilities in developing countries confirmed that in water 
resource planning and management (Ferdowsi et al., 2021), 
MCDA is the most used strategic water infrastructure and 
stakeholder management technique. Although not 
adequately available in most developing countries, MCDA 
techniques as decision-support tools have been 
implemented by several researchers in water loss 
management studies. Hence, the knowledge gap of MCDA 
in developing countries resulting in non-application is 
understood and validated (Golfam et al., 2019; Waris et al., 
2019 and Noori et al., 2021). Furthermore, the development 
of decision support in the form of MCDA makes it possible 
for water managers to select adequate priority strategies for 
specific local water loss conditions or contexts faced by 
water utilities. From a comprehensive water resource 
management globally, MCDA (Noori et al., 2021) techniques 
have been extensively researched and applied in a decision-
making environment. Therefore, some of the most widely 
developed and utilized multi-criteria techniques in water 
resources management are highlighted in this article.

  



1.1 Critical Review MCDA Methods 
 
The concept of MCDA has evolved over a period of time 
within the water resource management sector as well as 
outside the water sector. A recent MCDA review (Golfam et 
al., 2019) for water resources management and planning 
revealed that MCDA is prominently utilized to evaluate water 
policies, infrastructure and strategic planning. The research 
implies that the most prevalent applied techniques are 
compromise programming (CP), fuzzy set-analysis, analytic 
hierarchy process (AHP) (Waris et al., 2019), preference 
ranking and organization method for enrichment evaluation 
(PROMETHEE), and elimination “et choixtraduisant la 
realité” (ELECTRE; in English: elimination and choice 
expressing the R´ reality). A recent MCDA review (Golfam 
et al., 2019) for water resources management and planning 
revealed that MCDA is prominently utilized to evaluate water 
policies, infrastructure and strategic planning. The research 
implies that the most prevalent applied techniques are 
compromise programming (CP), fuzzy set-analysis, analytic 
hierarchy process (AHP) (Waris et al., 2019), preference 
ranking and organization method for enrichment evaluation 
(PROMETHEE), and ELECTRE.  
 
Research in decision-making is sometimes assisted by 
methods designed to rectify operational challenges. 
Researchers (Adili and Işik, 2016) compared additive ratio 
assessment (ARAS) and COPRAS methods with each to 
select appropriate operational air conditioners for a specific 
projects using decision making and preference process. 
Both methods had similar performance characteristics. 
Nurmalini and Rahim (2017) investigated the comparative 
performance of weighted product-model(WPM), 
CORPRAS, AHP, TOPSIS, and weighted sum model 
(WSM) to determine sustainable house affordability 
assessment technique. They utilized CP, TOPSIS and the 
simple additive-method (SAW) Nurmalini and Rahim (2017) 
in creating a water resource management model to 
delineated the best prominent alternative water loss 
technique. Banihabib and Hashemi Madani (2017), 
performed a comparative assessment of non-compensatory 
and compensatory multi-criteria techniques for the strategic 
management of water resources. AHP and SAW represent 
the compensatory approach, and ELECTRE III is a non-
compensatory technique. The inferences depicted that the 
ELECTRE-III approach explicated low sensitivity compared 
to the AHP and SAW methods in weight changes. Moreover, 
the obtained ranking from the ELECTRE-III approach was 
highly reliable in terms of decision-making processes. 
Cambrainha and Fontana (2018) formulated different 
decisions abstracted from decision makers (DM) to the 
hierarchy of EC. The study utilized a pairwise comparison 
approach to elicit the group preferences in water-loss 
management. These group preferences of the water-loss 
framework from DM were then aggregated to recommend 
AHP (Ilaya-Ayza et al., 2017). The PROMOTHEE method 
and its family of related techniques were used in certain 
outranking methods (Sureeyatanapas, 2016). In the 
compensatory approach, the assessment of alternatives 
assumes the trade-offs among different criteria. However, in 

non-compensatory techniques, the loss of alternative criteria 
could not be compensated through other criteria (Zardari et 
al., 2015). In other studies, the weighted sum model (WSM) 
which is a simplified technique that represents AHP, wherein 
every water-loss reduction alternative is assessed with 
various EC expressed in the same measure units, was 
established by adding every alternative score to every EC 
and multiplying it by the average weight of the EC. The 
outcome was used to develop divergence of various scores 
into final group decision (Samanta et al., 2016). Although not 
exhaustive in this paper, finally, Kumar and Qin (2016) 
demonstrated the elimination and choice-translating reality 
(ELECTRE) method, which belongs to the family of MCDA 
approaches. In this study the researchers used the 
outranking of the alternatives in selecting, sorting and 
ranking the appropriate water-loss reduction alternative 
within the decision-making process. The ELECTRE method 
utilizes priority ranks to recommend specific water-loss 
reduction alternatives. The research objectives of this article 
are to (a) propose a MCDA model for the water distribution 
system to evaluate strategies of water-loss management; 
(b) frame out an efficient and reliable MCDA approach using 
the PROMETHEE-II method to assess different preferences 
of decision-makers as well as integrating and prioritization 
of water-loss reduction options; and (c) determine the most 
preferred options of decision-makers in enhancing technical 
capacity, financial reliability as well as socio-economic and 
institutional governance. The authors made preliminary 
deduction that the identified challenge of high water losses 
could possibly be addressed with integrated MCDA design 
strategies using methods such as PROMETHEE-II and D-
Sight Software with its sensitivity analysis. Such an 
approach could address strategic goals of health, safety, 
environmental, institutional, socio-economic, technical and 
financial governance. The proposed models are based on 
multi-criteria decision-aiding design methods. 
 
1.2 Scenario Planning and Setting 
 
The MCDA approach to evaluate water-loss management 
strategies for WDS was applied to Alexandra township in 
Johannesburg (South Africa) , which is representative to 
other informal settlements in Africa, South America and Asia 
(Mathye et al., 2022b).The case study is characterized by a 
dense population, serious socio-economic challenges and a 
deterioration of infrastructure including water supply 
systems. Figure 1 shows the Alexandra township map which 
further depicts the dense settlements and water distribution 
system (figure not to scale). Alexandra is a socio-economic 
township with high unemployment and less accountable for 
water payment (Mathye et al., 2022a). In 2016, the 
estimated annual total system input volume (SIV) was 
18.5Mm3 and 87.02% of the entire SIV was reported as 
NRW, which equates to a USD revenue loss of USD 
49,882M (Mathye et al. 2022a). Table 1 shows the 
computed Alexandra Township water balance for 
2019/2020, where 95.2% was estimated as NRW (Mathye 
et al., 2022a). The scientific and hydraulic results findings 
are the novelty that motivate MCDA application to assess 
strategies for water loss reduction.



 
 

  Figure 1. Alexandra Township Layout Plan. 
 

 
Table 1. Alexandra water balance for the financial year 2019/2020. 

System 
Input 

Volume 
(SIV) 

26,272,578.5
3 m3/yr. 
100% 

Authorized 
Consumptio

n 
17,676,052 

m3/yr. 
67.28% 

Billed Authorized 
Consumption 
1,257,383.25  

m3/yr. 
4.79% 

Billed Metered Consumption 
873,195.03 m3/yr. 

3.32% 

Free Basic Water 
337,902.5 m3/yr. 

1.29% 

Billed Unmetered 
Consumption 
384,188 m3/yr. 

1.46% 

Recovered Revenue 
Water 

919,480.71 m3/yr. 
3.5% 

Unbilled 
Authorized 

Consumption 
16,418,668.77 m3/yr. 

62.49% 

Unbilled Metered 
Consumption 

16,418,668.77 m3/yr. 
62.49% 

Non-Revenue Water 
(NRW) 

25,015,195.28 m3/yr. 
95.21% 

Water 
Losses 

8,596,526.51 
m3/yr. 

32.72% 

Apparent Losses 
No Historic Data 

0 m3/yr 
0.00% 

Real Looses + Unauthorized 
Consumption 

8,596,526.51 m3/yr. 
32.72% 

Real Losses 
8,596,526.51 m3/yr. 

32.72% 

Reservoir Overflows 
<0.01 m3/yr 

<0.01% 

3. MATERIALS AND METHOD 
 
3.1. Overview of methodologies 
 
The novelty the study is combination a scientific and 
hydraulic modelling in water supply system with decision-
making matrix to draw convergence of integrated water loss 
management strategy. The authors used PROMETHEE II 
preference outranking method though a D-Sight software to 
derive synergies of the group's strategic objective in 
managing water losses. The PROMETHEE method is 
commonly successful in over 90% of MCDA applications in 
forestry, finance, chemistry, logistics, transport, water 
resources and environmental management (Safari et al., 
2021). PROMETHEE II allows DMs to group their criteria in 
a tree to structure a problem sequentially and integrate a 
group decision through a brainstorming session. In this 

study, the authors selected eight water loss management 
experts called DM from the water utility with work experience 
ranging between 10 and 15 years. The selected 8 DM 
strategically occupied roles in water loss management in the 
following classified functional components:  
 

• [DM1-DM2]_Physical Losses Department,  

• DM3_Corporate Finance,  

• DM4 & DM5_Operations and Maintenance,  

• DM6_Metering Department,  

• DM7_Stakeholder & Customer Management) and  

• DM8_Planning and Policy Monitoring.  
 
The ten EC were taken as a product of the Likert index (1-5) 
process that the authors applied to prioritize ten EC and six 
SO for this study. Table 2 shows the Likert scale tabulation. 



Table 2. Likert Scale Tabulation. 

Linguistic Description Interval Level 

Very Poor (Very Low) 1 

Poor 2 

Fair (Medium) 3 

Good 4 

Very Good (Very High) 5 

The ECs was a  premise through which elicitation of weights 
apportioned by the DM to strategic objectives (SO) was 
derived. Table 3 presents the ten priority evaluation criteria 
(EC) and the corresponding criteria description indexes 

abstracted from the utility's strategic objective (SO) thrust 
(Mathye et al., 2022a) through the help of the DM during a 
brainstorming session. Figure 2 illustrates the three-phase 
process flow of the methodology.  

 

  

Figure 2. Technical Data Flow Methodology. 
 
Table 3 presents the ten EC and their corresponding 
description index as well as the respective Likert scale in 
direct proportion to table 2. The ECs and description index 
were derived by the DMs from the water utility strategic 

thrust (Mathye et al. 2022a). The proceeding sections 
present the flow process, data collection, mathematical 
formulation followed and results.  

 
Table 3: Evaluation Criteria. 

Evaluation Criteria EC Code Likert Scale Criteria Description Index 

Revenue collection EC-1 Maximize 
(4-5)* 

The objective of the utility is to increase revenue generation levels. 
Therefore, the option is highly preferable, if the potential is high.  

Investment of 
infrastructure 

EC-2 Minimize  
(4-5)* 

Implementation and investment costs for new infrastructure: if the 
cost is low, the option seems highly preferable. 

Operation and 
maintenance costs 

EC-3 Minimize  
(1-3)* 

Operation and maintenance expenditure levels: if the cost is low, the 
option seems highly preferable. 

Water saving EC-4 Maximize 
(4-5)* 

Institutional capacity to reduce water losses: if the potential is high, 
the option seems highly preferable. 

Meter testing EC-5 Maximize 
(4-5)* 

Ability to improve meter quality to increase meter accuracy: if the 
potential is high, the option seems highly preferable. 

Quality of water EC-6 Maximize 
(4-5)* 

The capability of the prevailing option in increasing the quality of 
water: if the potential is high, then this option is highly preferable.  

Speed and quality 
of repairs 

EC-7 Maximize 
(4-5)* 

Capability to minimize run time of leakage: the option is preferable, if 
the potential is high. 

Infra-system quality EC-8 Maximize 
(4-5)* 

The capacity of the available technology; the higher the integration 
potential, the more preferable this option 

Service affordability EC-9 Minimize  
(1-3)* 

The impact of water pricing and affordability index: if the relative cost 
seems low, then the option is highly preferred. 

Water-Policies EC-10 Maximize 
(4-5)* 

The ability of institutional water policy at the local level; the higher the 
viability level of the option, the more preferable the option. 

Stage 1
Research 

Instrumentation

Stage 2 Data Collection

Stage 3
Data Simulation and 

Presentation of 
Results 

Desktop study, literature and water utility internal 
technical report analysis; e.g., water balance, 
budgetary plan and infrastrcure investment

Setting-up of hydraulic modelling for water distribution 
system, brainstorming session with 8 Decion Makers 

(DM) and elitication through PROMETHEE II.

Transient flow, water balance, Data Elicitation of 
evaluation criteria (EC) and DMs preference function 

(PF), divergence of goup decision.



Figure 3 represents a four-phased MCDA Methodological 
Flow Process for SO and EC as well as steps taken for 
developing MCDA integrated water loss management mode 
in water distribution system. The MCDA process flow shows 
what the authors used to define problem of water losses, 
integration of decision makers (DM)’ EC, SO through MCDA’ 
PROMTHEE II. The process flow also show elicitation 

process, positive and negative outranking process, D-Sight 
software programming, sensitivity analysis as well as group 
decision divergence for final model achievement. Figure 4 
shows the MCDA Strategic Objectives and Evaluation 
Criteria Tree that combines table 2 and table 3 through the 
four phases presented in figure 3.  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. MCDA Methodological Flow Process. 
 

Problem Definition  

• Identification of Strategic Objective (SO) 

• Identification of Evaluation Criteria (EC) 

• Identification of Decision-Makers (DMs) 

Evaluation Criteria Process 

• Data Collection  
• Preference Function (PF) ;  [𝑃𝑗(𝑎, 𝑏)] 

• Prepare Evaluation Matrix Tree  

Selection of MCDA Technique 

• PROMETHEE II- GAIA  
(Geometric Analysis for Interactive Aid) 
 

Out Ranking 

• Criteria Weights [SOj & ECj] 

• Positive Out Ranking: [𝜑+(𝑎)] 
• Negative Out Ranking [𝜑−(𝑎)] 

• Net Out Ranking [𝜑(𝑎) = 𝜑
+

− 𝜑−] 

Data Linear Programming 

• D-Sight Software 

 

DMs Outflow Analysis 

• Sensitivity Analysis [EC, SO] 

• Group Decision Ranking 

• Principal Component Analysis 

(PCA) 

•  

 

Group Decision Results 

• Global DMs Output 

• Alignment of DMs (SOj) 

• GAIA plane 

 

Final Model 
Achieved ? 

Close-Out Report 

• Final Recommendations 

• Portfolio of integrated Alternatives 
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Figure 4 presents the MCDA tree for six corresponding 
strategic objectives (SO) as well as ten water loss evaluation 
criteria (EC).  The SOs and ECs were abstracted water utility 
(Johannesburg Water SOC, LTD)’ strategic objective thrust 
and are as follows: (SO1)_ Financial Objectives, (SO2)_ 

Environmental Objective, (SO3)_ Health Compliance 
Objective, (SO4)_Technical Objective, (SO5)_ 
Socioeconomic Aspects and (SO6)_ Institutional 
Governance. Furthermore, the impact of DM's preference 
weighting is examined using the PROMETHEE_II tool. 

 
 

 
 

Figure 4. MCDA Strategic Objectives and Evaluation Criteria Tree 
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(SO1): 

Financial Objective

EC1: Revenue Collection (RC)

EC2:Infrastructure Investment (IC)

EC3: Operation & Maintenance Costs (OC)

(SO2): 

Environmental Objective EC4: Water Saving (WS)

(SO3): 

Health Compliance 
Objective

EC 5: Meter Testing (MT)

EC6: Water Quality (WQ)

(SO4): 

Technical Capacity

EC7: Speed and Quality of Repairs (SR)

EC8: Infra-System Quality (IQ)

(SO5):

Socio-Economic Aspects EC9: Service Affordability (SA)

(SO6):

Institutional Governance

EC10: Water Policies (WP)



 
3.2. Data Collection Process 
 
The SO and EC in the data collection as well as the weights 
were independent and non-negative numbers obtained from 
particular criteria units, where weight criteria were high. It 
follows that the criterion is likely to be significant. 
Normalization of weights was performed and the total sum 
was equated to zero. The weights of SO and EC for each 
DM are abstracted and computed by the revised SIMOS 
algorithm obtained from DM questionnaire responses. The 
SO and EC weights are related to every class, been equally 
placed evaluation criteria in the arranged pattern of DM and 
sorted in increasing performance order.  
 
The elicitation process to select six SO and ten EC through 
Likert scale tabulation was undertaken during a 
brainstorming session with eight decision-makers. The DMs 
were presented with six SO cards and ten EC with black 
cards used for the priority ranking of EC and SO. The DMs 
were asked to lay out EC and SO cards upon a table. Their 
ranking implies the significance order based on expert 
judgement. This was done by moving the EC and SO cards 
around until agreement was reached. The DMs were further 
asked to place several blank cards between SO1 and SO2 
or EC1 and EC2 (e.g., 2). The EC and SO weights are then 
calculated for r =1 to a limit of ñ, where ñ represents the 
ranking level counts as stated below. The SO and EC 
weights were calculated for r equal to 1, towards the ñ limit, 
wherein ñ denotes the ranking level count stated in equation 
(1). In the abstraction and computation of non-normalized 
weights for every DM, the equally placed SO and EC on the 
rank are allocated with the same k(r) non-normalized weight 
 
k(r) = 1 + u(X0 + ⋯Xr)   (1) 

 

where k(r) is the rank of SO or EC, u is the weight value 
between two EC and SO, X0 = 0 and Xr is he rank (r) of any 

criterion is defined in their order of increasing importance in 
the DM’s response priority pattern read from left to right. “X” 
is the total number of gaps between the highest ranked EC 
or SO and the lowest ranked EC or SO (e.g. RC and IQ ), 
then it means the parameter “u” is defined as:  
 
u = (z − 1)/X    (2) 

 
Where the rank (r) of any criterion is defined in their order of 
increasing importance in the DM’s response priority pattern 
read from left to right. The “z” is a parameter defined by DMs’ 
responses to the questionnaire survey. When abstracting 
and computing the non-normalized weight for all DMs; the 
EC placed on rank (r) for all SOs was performed. In addition, 
all EC were assigned the same non-normalized k(r) weight. 
All DM were further asked to select the corresponding 
preference function (PF) type for specific EC. The authors 
adopted recommendations by DM using the preference 
function (PF) type to determine (q), which is the threshold of 
indifference Furthermore, (p) is a threshold of strict 
preference and (s) is an intermediate value between q and 
p. After this exercise, all DM ranked the EC and SO and 
counted the corresponding blank cards. Table 3 presents 
the preliminary DM preference elicitation questionnaire 
survey data. The EC and SO weights for each DM were later 
computed through the "revised SIMOS" algorithm. The data 
in Table 1 were used and processed by PROMETHEE II- 
Geometric Analysis for Interactive Aid (GAIA). The D-
sight software was applied for normalization and analysis. 
Corresponding results are presented in the proceeding 
sections. 

3.3. Evaluation Criteria Process 
 
The study benefitted from the skills of experts and 
specialists using D-Sight Software to analyze all collected 
data. The scores produced by the PROMETHEE II method 
are between -1 and +1. This software normalizes data on a 
0 to 100 scale to ease the readability of results. To compare 
the different alternatives for each DM preference, the 
following evaluation criteria process was undertaken: 
 

• evaluation matrix representing the assessment of 
each alternative against each EC;  

• (ii) criteria weights representing the importance of 
each EC (note that each DM gave a specific set of 
weights during computation); and  

• (iii) preference functions and preference thresholds 
(if applicable) utilized for computing alternative 
noncriterion scores. The usual PF (type 1) was 
selected by each DM for all EC and was applied 
during the elicitation process.  

 
 

 
 
 
This process will be done in two stages; (1) Weighting for 
Evaluation Criteria (EC) and (2) Weighting for higher level 
objectives. The relative importance of EC is expressed in 
terms of weights. Each of the ten (10) cards has the name 
of an EC written on it. A small explanatory note is also given 
at the back of each card. 
 

• Step 1: - Arrange the cards in a row representing 
the order of importance starting with the most 
important EC.  For equally important EC, you may 
group the cards together. 

• Step 2: - To express the gaps in importance, insert 
any number of blank cards that have been given to 
you. The greater the difference in importance of the 
EC, the greater the number of blank cards between 
them. 

• Step 3: - Recording the pattern is that the first card 
(SO/EC) is the most important criterion and the last 
one is the least important. 

 



3.4 The Weight Normalization 
 
The proceeding sections present the DMs elicitation 
questionnaire survey data processed by the authors. The 
SO and EC weights were independent and non-negative 
numbers obtained from particular criteria units. If the weight 
criterion is high, then this criterion is likely to be significant. 
Normalization of weights has generally been performed. The 
total sum is equal to zero. For every decision-maker, the 
weights seem to be rather different. Hence, the ranking for 
every decision-maker is calculated by SO and EC. The 
weights of SO and EC for each DM are abstracted and 
computed by the revised SIMOS algorithm obtained from 
DM questionnaire responses presented in the Table 4.  

The rank (r) of the criterion is defined in a particular order to 
increase the significance in the response priority patterns of 
DM from the left to the right hand side. The parameter Z is 
defined through the responses of DM to the survey. By this 
the DM places no blank cards among any two SO or EC 
cards. Similarly, if there is one blank card between two SO 
or EC cards, there are subsequently two gaps. Hence, if this 
X represents the total count of gaps among the highest 
ranked SO or EC and the lowest ranked SO or EC (like IQ 
and RC), then the parameter 'u' can be defined as shown in 
equations in the proceeding section.

 
 

Table 4 : Decision-makers Preference Elicitation Questionnaire Survey Data.
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3.5 Mathematical Formulation 
 
The following section presents the mathematical formulation 
applied in this study. Data interpolation is summarized in 
equation  
 

[
 
 
 
 
 
 
 
 

g1(a1)g2(a1)… . . gj(a1)…  gn(a1)
.

g1(a2) g2(a2) … . . gj(a2) . . . gn(a2
………………………………… ……… .

.
g1(ai)g2(ai)… . . gj(ai)…  gn(ai)
…………… ………………… …… . .

.
g1(am)g2(am)… . . gj(am)…  gn(am)]

 
 
 
 
 
 
 
 

  (3) 

 
where 𝑔𝑗(𝑎𝑗) is the performance of ith alternative for jth 

criteria, 𝑚 is the total number of alternatives, and 𝑛 is the 

total number of criteria. Furthermore, gj(ai) represents the 

ith alternative performance upon the jth criterion, n denotes 

the count of criteria, and m defines the count of alternatives. 
The PROMETHEE-II technique depends upon the pairwise 
method wherein the deviation between two alternative EC is 
considered a preference with a value between zero and one. 
For every criterion, the preference function (PF) can be 
explained through the mathematical formulation in equation 
4 
 
Pj(a, b) =  Fj[dj(a, b)]∀ a, b ∈  A   (4) 

 
Where … Pj  dj(a,b) = [gj(a) - gj(b)] and 0 ≤ Pj(a,b) ≤ 1 

 
3.5.1 Preference Function Types 
 
Usually, there are six general types of preference functions 
namely level shape criterion, U-shape criterion, V-shape 
criterion, usual criterion, Gaussian criterion and V-shape 
with indifference criterion. The DM can have the privilege to 
choose from the preference functions. The DM can specify 
the various threshold parameters such as p, q and s 
depending upon the application type of preference 
functions. In cases where DM choose “type 1” (“usual 
criterion” PF), the evaluation matrix gj(.), the relative 
(weight) of the jth criterion (wj) and the generalized criterion 
{gj(.), Pj(a,b)} need to be defined (Mutikanga, 2012). 
Equation 5 presents the type 1 PF for DMs’ possible 
selection. 
 

[
 
 
 
 
 π(a, b) = ∑

.
Wj Pj(a, b)

n

j=1
.
.

π(b, a) = ∑
.

Wj Pj(b, a)
n

j=1 ]
 
 
 
 
 

    (5) 

 
where π(a,b) is the degree of measure for which 'a’ is 
preferable to ‘b’ for all criteria, and π(b, a) represents the 
preference of ‘b’ over ‘a’ for all criteria. In some cases, a 
criteria may emerge where “a” > “b” or “b > “a” and therefore 
π(a,b) and π(b, a) are usually positive.   

 
 
The method is generally a pair-wise approach in which the 
variations of two alternative estimation criteria are taken into 
account as a preference function. From existing research, it 
has been stated that the preference value generally lies 
between 0 and 1. The mathematical formulations for the 
preference functions can be given in equation 6, where 
𝜋(𝑥, 𝑦) is the level of measure at which x is more preferred 

than y for all criteria. The 𝜋(𝑦, 𝑥) is the level of measure at 

which y is more preferred than x for all criteria. In some rare 
cases, where x>y or y>x, π(x,y) and π(y,x) are generally 
positive. Equation 6 shows the preference where divergence 
preference functions for more DMs are integrated. 
 
𝑃𝑗(𝑥, 𝑦) = 𝐹𝑗[𝑑𝑗(𝑥, 𝑦)]∀𝑥, 𝑦 ∈ 𝐴   (6) 

 
where … d𝑗(𝑥, 𝑦) = [𝐺𝑗(𝑥) − 𝐺𝑗(𝑦)] presents the PF for 

more DMS, and the value of 𝑃𝑗(𝑥, 𝑦) are between 0 and 1. 

 
The PROMETHEE procedure can be applied once the 
evaluation matrix 𝐺𝑗(𝑥) is established, the weights Wj and 

the generalized criteria gj, Pj Pj(a,b) = are defined for i = 

1,2,...,n; j = 1,2,...,k (Mutikanga et al., 2012) 
 
3.5.2 Beneficial and Non-Beneficial Criterion 
 
The following conditions are applied while implementing 
beneficial and non-beneficial criteria for either a lower or 
higher value: In case of beneficial criteria, the alternative x 
is given preference over the alternative y in the above 
equation for the variations among their calculations on the 
jth criterion. In case of non-beneficial criteria, the equation 6 
can be rewritten as below.  Equation 7 indicates the non-
beneficial PF for DMs 
 
𝑃𝑗(𝑥, 𝑦) = 𝐹𝑗[−𝑑𝑗(𝑥, 𝑦)]    (7) 

 
where 𝑃𝑗(𝑥, 𝑦) is the PF for the DMs in a non-beneficial 

criteria for higher or lower scores value 
 
3.5.3  PROMETHEE II Outranking Alternatives 
 
In the preference ranking methods for PROMETHEE I and 
II, the values of π(x,y) and π(y,x) are calculated 
mathematically for each alternative pair in the evaluation 
matrix for each DM. The comprehensive analysis for 
outranking graphs is calculated using a mathematical 
model. The below equations are modeled to develop an 
equal number of alternatives x or y. 
 
i. Positive Outranking 
 

𝜑
+(𝑥)=

1
(𝑚−1)

∑ 𝜋(𝑥,𝑎)𝑛
𝑎∈𝐴     (8) 

 

w Where:  𝜑+(𝑥)  outranking, each option a, belonging to the 

set  of options ∑ 𝜋(𝑥, 𝑎)𝑛
𝑎∈𝐴

  
, 𝜋(𝑥, 𝑎) is the overall preference 

index of a over b, taking into account all the criteria, 𝜑+(𝑥)   

 



i. Negative Outranking 
 

𝜑
−(𝑥)=

1
(𝑚−1)

∑ 𝜋(𝑎,𝑥)𝑛
𝑎∈𝐴     (9) 

 

Where:  𝜑+(𝑥) and 𝜑−(𝑥)  outranking, each option a, 

belonging to the set  of options ∑ 𝜋(𝑥, 𝑎)𝑛
𝑎∈𝐴

  
, 𝜋(𝑥, 𝑎) is the 

overall preference index of a over b, taking into account all 

the criteria, 𝜑+(𝑥) and 𝜑−(𝑥)   

 
The positive and negative outranking measure the strength 
and weakness, respectively, of a compared decision by a 
decision-maker to other preference options Pj(b, a) 
(Mutikanga, 2012). PROMETHEE II, that is an entire pre-
order ranking model in comparison to the partial outranking 
model.  
 
The positive outranking model is indicated by alternative 
outranking x. All the other estimation criteria are taken as 

alternatives. A higher value of  𝜑+(𝑥) indicates a better 

alternative. The negative outranking model indicates how 
the alternative x is outperformed by further evaluation 

criteria. Thus the minimum value of 𝜑−(𝑥)  denotes a toward 

optimal alternative. 
 

ii. Net Outranking 
 
After the completion of negative and positive outrank flows 
for alternatives, for each alternative the net outranking is 
provided by equation 10 
 

𝜑(𝑥) = 𝜑+(𝑥)−𝜑−(𝑥)
    (10) 

 
where φ𝑥 the usual criterion PF that integrates positive 

outranking towards optimal alternatives  𝜑+(𝑥) . Hence, to 

estimate the net outranking value, equation 10 must be 
rewritten as equation 11. 
 

𝜑(𝑥) = 𝜑+(𝑥)−𝜑
−(𝑥)=

1
(𝑚−1)

∑ ∑ [𝑃𝑗(𝑥,𝑎)−𝑃𝑗(𝑎,𝑥)]𝑊𝑗𝑛
𝑎∈𝐴

𝑛
𝑗=1

  (11) 

 

where φ(𝑥) the usual criterion PF, the jth criterion relative 

weight (WJ), generalized criterion, the evaluation matrix gj(.) 
and Pj(a, ), the positive outranking towards optimal 

alternatives  𝜑+(𝑥)  or negative outranking towards optimal 

alternatives  𝜑−(𝑥) . Equation 12 gives a summation of net 

outranking of usual PF for all DMs 
 
𝜑(𝑥) = ∑ 𝑊𝑗𝜑𝑗(𝑥)𝑛

𝑗=1     (12) 

 

where φ𝑥(a) the usual criterion PF, the jth criterion relative 

weight (WJ). Yet, the value of φj(x) in the net outranking flow  
 
 

 
 
for a single criterion concerning the jth iteration is given in 
equation 13. 
 

𝜑𝑗(𝑥) =
1

(𝑚−1)
∑ )𝑛

𝑎∈𝐴      (13) 

 
where φj(𝑥) the usual criterion PF, 𝑛 is the sample size e.g. 

8 DMs 
 
In net outranking, φ(a) represents the Single Criterion and 

the net flow gained for the jth Criterion equation 14. 

 

φj(a) =
1

(m−1)
∑ [Pj(a, x) − Pj(x, a)x∈ A ]  (14) 

 

where φj(a) the usual criterion PF, the jth criterion relative 

weight (WJ), generalized criterion, the evaluation matrix gj(.) 
and Pj(a, ). 
 
To determine the complete ranking matrix for the 
PROMETHEE II – (GAJA), a geometric analysis for the 
interactive aid plane concerning the relative and graphical 
position of options for its role to different criteria is used. The 
entire evaluation matrix M(m×n) is then defined and based on 

the Single Criterion with net flows of all alternatives. The 
representative mathematical formula is given in equation 15. 
The entire evaluation matrix of order M(mxn) depends on a 
single criterion with net flow alternatives (equation 15), 
 

[
 
 
 
 
 
 
 

φ1(a1) φ2(a1)…  φj(a1)…  φ1(a2)
.

φ2(a2) φ2(a2)…  φj(a2)…  φn(a2)
……… ………………………… . .

φ1(ai) φ2(ai)…  φj(ai)…  φn(ai)
.

……… ………………………… . .
φ1(am) φ2(am)…  φj(am)…  φn(am)]

 
 
 
 
 
 
 

   (15) 

 
where φ1(a1) presents the DM and PF criteria, and φj(ai) 
are indicative of the divergence criteria point for DM in the 
data sample. In generating the complete evaluation matrix 
(M), the GAIA plane is modeled by projecting these values 
in equation 15 on the plane. It is modeled in such a manner 
that the least information on the preference function’s 
evaluation criteria can be considered as being lost.   
 
In the GAIA plane, the alternatives (x1,x2,...xm) are modeled 
through points and the criteria (c1,c2,...,cn) are indicated by 
the axis generated from equation 15. Moreover, the 
implementation of the PROMETHEE II-GAIA model that 
uses D-sight software has been used commonly in the state-
of-the-art literature. 

 
 
 
 
 
 



4. RESULTS AND DISCUSSIONS 
 
4.1. Weight Index Results of Decision-Makers 
 
The proceeding sub-sections present an assessment of 
outcomes and a discussion concerning inferences. Figure 5 
presents the elicited EC weights and rankings for each DM, 
while Fig. 6 shows the corresponding strategic objective 
ranks and weights. The variable weight index data in Figs. 5 
and 6 show the independence of the DM's preference and 
their ranking of EC in response to the corresponding water 
loss reduction strategic objectives (SO). Although each DM 
weight allocation is initially independent of others, the 
PROMETHEE II methods become useful in integrating final 
group decisions for each criterion. The decision-maker 
presents the relative significance of criteria through ordinal 
preferences, which allows for the definition of the 
determining function wherein the numerical values denote 
the weight representation. For instance, in the order of 
priority weight and ranking, most DM-allocated weight 
scores are between 17 and 19 with rankings from 8 to 10 for 
revenue collection (RC). Note that a ranking of one indicates 
least importance and ten represents the highest importance. 
This scoring pattern is consistent with the financial objective 
SO1 (Fig. 5). This means that most DM agree on prioritizing 

financial capacity to enable the water utility to manage water 
losses well. However, less priority is given to operation and 
maintenance costs (OC), speed and quality of repair (SR), 
meter testing (MT) and water saving (WS), which, in 
practice, are commonly believed to be variables belonging 
to a sound strategy for curbing water losses. Furthermore, 
the low-weight allocation and ranking of EC such as water 
policies (WP) and service affordability (SA) are not aligned 
to SO1, which most DMs have prioritized. The authors made 
a preliminary deduction that, within the water utility, various 
DMs strategically represent their independent functional 
analysis of what water loss reduction criteria should entail in 
terms of their preference function for each corresponding 
strategic objective. It is the authors' further deduction that, 
although the DMs are experienced in water loss 
observations, their functional and operational gaps in water 
loss control could be why water loss reduction strategies are 
not efficiently prioritizes by the water utility. The authors’ 
preliminary deduction, are further justified by the NRW of 
about 95% outlined in Table 1 above. 

 

 
Figure 5: Rank and evaluation criteria for decision maker (DM) weight indexes. 

 
 
 
 

 



As indicated in Fig. 6 below, when a water utility's executive 
personnel have a disintegrated approach towards the 
reduction of water losses or focus their resources on one 
strategic objective in this case (SO1), other critical SO such 

as institutional governance (IG), technical capacity (TC) and 
socioeconomic (SE) objectives become high risk and 
difficult to manage. This may collectively lead to results 
characterized by exponential water loss challenges. 

 

 
Figure 6: Rank and weights of decision makers (DM) for strategic objective indices. 

 

 

Figure 7 presents the rounded-off results of normalization of 
weights for each EC alternative, while Fig. 6 presents the 
integrated rounded-off EC pattern. The weights of the DM 
are obtained through the 'Revised Simos' procedure. Figure 
5 shows also that when EC weights are normalized for all 
DM, a more balanced outlook represented by a MCDA can 
be achieved. For integrated group decisions, the mean and 
median descriptive statistical values presented in Fig. 6 are 
assumed to be representative values as they agree with the 

group's majority perception. Therefore, rounded-up values 
were used within PROMETHEE-II with the D-Sight software 
application to normalize and graphically elicit group 
decisions for analysis and presentation in the proceeding 
sub-sections. After the normalization process, evaluation 
criteria such as SR, WQ, SA, WS and IC received more 
attention. Particularly RC proves that MCDA is a suitable 
alternative method to establish group decisions for water 
loss reduction approaches.  

 
 

 
Figure 7: Rounded-off weight index values by decision-makers. 



As presented in Fig. 8, the sensitivity normalization of the 
weighted scores and ranking resulted in integrated linear 
reduction values (R2) of 0.1865 and 0.997 with projected 
constants (C) of 6.2 and 6.8 for the mean (Mn) and median 
(Md), respectively. Although the 𝑅2 values appear 

insignificant, it is worth deducing that all EC have the same 
pattern, except for SA, which is increasing in priority, 
because its relatively high importance is what may enhance 
more RC for the respective water utility. Thereby, the author 
made the further deduction that MCDA design seems to 

handle qualitative data well and should be used as a tool for 
planning on appropriate case-based water-loss reduction 
strategies. Accordingly figure 6 further shows that the 
sensitivity analysis of all ECs per DMs might not have been 

initially integrated into an organizational water loss control key 
performance areas, however the PROMETHEE II’ MCDA 
still offer a more intelligible DMs comprehensive decision 
and offers optional analysis of what DMs thinks of water loss 
control in their substantial daily-functions or output.

 
 

Figure 8: Rounded-off evaluation criteria mean and median outlook 
 
 
4.2 Comparison of Results for the Different Decision-Makers 
 
Figure 9 shows diverging results and normalized scores for 
various DM. While it is often efficient to aggregate the 
preference scores of DM for each SO and the corresponding 
EC, it is crucial for most group decisions to first promote 
independent thinking and ideas (resulting in enhanced 
divergence) before final aggregation can be elicited 
(Sureeyatanapas, 2016). Further, when applying MCDA, 
proper visualization for elicited and sensitivity-normalized 
DM output is required. This will help investigators to draw a 
more divergent picture of what should be prioritized from a 
group decision perspective. As demonstrated in Fig. 7, DM 
are represented by the different colors to allow for improved 
visual assessment of all alternatives to decide on 
preferences regarding divergence. For example, EC4 and 

EC5 are the criteria for which there is a consensus by most 
DM. EC8 is the best or at least one of the best alternatives 
identified by all DM. While it has been proven above that the 
non-normalized and non-elicited independent scores do not 
paint a picture of consensus, Fig. 7 shows that both 
PROMETHEE II and D-Sight software may help in drawing 
more divergence on the DM's view when applying water loss 
reduction strategies. This suggests that the mixed-method 
technique of elicitation and normalization of individual 
scores to group divergence helps to address the limitations 
of a single-view decision in water loss management. This 
suggestion is supported by previous studies 
(Sureeyatanapas, 2016; de Brito et al., 2019; Abdullah et al. 
2021). 

 



 
Figure 9: Divergence of decision maker (DM) results 

 
4.3. Alignment between the group decisions 
 
4.3.1. Global Results 
 
Figure 8 presents the global alignment of DMs group 
decisions. For this analysis, the PROMETTHE-II' D-Sight 
software application normalized all weights and DMs 
received the same weights per alternative. This means that 
no individual DM will have more impact than any other in the 
determination of the global scores of alternatives. In other 
words, each alternative's global score equals the average of 
its scores obtained for all DMs. It is important to assess how 
the different DMs evaluations are aligned on the global 
score results.  To start with, the weights given by each DM 
need to be looked at individually and then collectively. 
Considering figure 8, the normalized average weights given 
to each category by different DMs are shown dark yellow, 
which proves that all DM's divergence and consensus are 
for the common objective of prioritizing the implementation 
of proper water loss reduction strategies. For instance, the 
strategic objective (SO) such as "Financial Objective" and 
"Environmental Objective" have a very low spread. On the 
other hand, the values for "Technical Capacity," "Socio-
Economic Objective," and "Institutional Governance" have 
considerably different global score averages, which means 
that there is no global consensus, although the overall 
pattern is comparable. The authors drew a preliminary 
deduction from the above findings that although the 
perception of reducing water losses is somewhat clear from 
DMs, as represented by a 'dark yellow line", the water utility 
appears to undervalue the impact of prevailing  
"Socioeconomic" conditions, lack of "Technical Capacity" 
and poor "Institutional Governance." This undervaluing of 

the crucial water loss reduction strategic objective could be 
a reason to justify further the NRW of about 95% in the case 
study area, since less efforts are put on these three main 
water loss reduction strategies (Table 1). As evidenced in 
Table 5, the strategic objective (SO6) on “Institutional 
Governance (IG) is receiving a high global score in its level 
of importance. Other studies have proven that poor 
institutional governance is what makes curbing water losses 
in developing countries a real challenge (Makaya 2016; 
Heryanto et al., 2021; Mathye et al. 2022). Although the 
“Financial Objective” (FO) was seen as a priority for 
maximization in the preceding results of this study, the 
global scoring view suggests that the water utility should 
prioritize strong "Institutional Governance”, however, its risk 
parameters (indicated by relatively high standard deviations) 
are lower when compared to the "Financial Objective. 
"Concerning the average weight percentage for the 
"Technical Capacity” objective and the "Socioeconomic 
Objective", it is worth highlighting that the water utility is 
comfortable with its "Technical Capacity" and the prevailing 
"Socioeconomic" dynamics in the example case study area. 
This is in agreement with the findings by Makaya, 2016 and 
Heryanto et al. 2021, who concluded that when water utilities 
in developing countries place less effort on improving the 
"Technical Capacity" as well as developing socioeconomic 
intervention plans to address water loss reduction it is a sign 
that such water utilities lack strong "Institutional 
Governance.

 



 
Figure 10: Global Alignment Alternative Scores for Group Decision-making. 

 
 

Table 5: Global Average Weight Score for Decision Makers’ Strategic Objectives  

Strategic Objective Average weight Standard deviation 

Institutional Governance 28.9% 2.9% 

Socioeconomic Objective 7.3% 3.5% 

Technical Capacity 10.1% 4.5% 

Health Compliance 19.8% 7.0% 

Environmental Objective 17.8% 7.8% 

Financial Objective 16.0% 10.4% 

 
 
4.3.2. Geometric Analysis for Interactive Aid “GAIA” 
 
As the last step in the proposed assessment process, 
PROMETHEE II allows use of visualization such as the 
Geometric Analysis for Interactive Aid (GAIA) plane in 
aiding decision-making. This plane is computed using the 
principal component analysis (PCA), where each DM will be 
represented by an axis and each alternative by a dot. The 
direction of an axis will show the direction where preferred 
alternatives can be found in the graph such as shown in Fig. 
9 (e.g., EC1 for DM1 and DM7). The length of an axis 
represents the differentiation by a DM concerning various 
alternatives. The longer the axis is, the greater is the 
difference (i.e. delta between minimum and maximum 
scores) between the alternatives for the corresponding 
decision maker. Hence, a very short axis indicates that all 
alternatives have a very similar score for that specific DM.’ 
Decision-makers with axes in the same direction have 
similar results in the ranking of alternatives. Moreover, 
alternatives close to each other have similar scores and will  
 
 

 
 
 
be preferred by the same stakeholders. The red axis, also 
known as the "Decision Stick" in the PROMETHEE method 
is obtained by using the weight values of all DM (i.e. the 
green axes) and showing the direction of the globally 
preferred alternatives EC8 and EC3. Finally, the global 
picture (GAIA-plane) allows for visualization of the three 
distinct clusters of alternatives that the water utility may 
implement in the quest to reduce water losses: 
 

• EC2, EC6, EC7 and EC9: these alternatives are 
either bad (inappropriate) or average (standard) for 
all DM. 

• EC4 and EC5: these alternatives are average for 
most DM. 

• EC3 and EC8: these alternatives are good 
(appropriate) for all DM. 

 
 
 



The technical limitation of a GAIA plane outlook is that there 
might be some visual “unreliability” (high scope for 

interpretation) as the authors represent an eight-
dimensional dataset into a two-dimensional plane. 

 Figure 11: Global GAIA Plane Example Representation. 

 
 

4.3.3  Integrated Water Loss Management Improvement Project (IWLMIP) 
 
  
The researcher embarked on the pre-testing phase by 
incorporating the prioritized water loss reduction strategy 
options from the first four specific objectives into Integrated 
Water Loss Management Improvement Project (IWLMIP) in 
Alexandra, South Africa. Figure 12 present the outcome of 
a PROMETHEE-II’ MCDA process. The outcome from the 8 
DMs indicated four SO with relevant performance indicator 
(PI) that requires maximizing namely; (i) financial 
reliability, (ii) technical capacity and sound (iii) 
institutional governance and (iv) socio-economic goals. 
When compared with the original strategic thrust of water 
utility (Johannesburg Water SOC, LTD) presented in table 2 
and measured through a Likert Scale 1-5, as integrated in 
table 3, the findings are relevant in that except “socio-
economic objective” that required minimizing, the other 
three findings for (i) financial reliability and capacity, (ii) 

technical capacity and sound (iii) institutional 
governance, require maximizing. .Therefore, it is evident 
that the 8 DM’ convergence through PROMETHEE II’ D-
Sight software prioritized the above 4 strategic objectives.  
The high profile ranking of that institutional governance and 
financial objectives is therefore key to effective WL  
management strategies. This outcome is common with other 
research findings, (Dighade et al., 2014, Mutikanga 2014; 
Makaya 2014).  Figure 12, therefore present the Integrated 
Water Loss Management Improvement Project (IWLMIP) 
which the authors used for further practical testing in a real 
case study in Alexandra urban township. The testing used 
quantitation principal component analysis (PCA) through a 
MATLAB algorithm to develop a final socio-technical 
IWLMM for developing countries.  



 
 

Figure 12 IWLMIP Result for Pre-Testing on IWLMM. 
 
 
The implementation of IWLMIP was crucial for fine-tuning of 
the IWLMM for implementation by water utility in Alexandra 
Township- Johannesburg (South Africa) and for other water 
managers in developing countries. The pre-testing outcome 
for PCA was done by sampling of 61 professional personnel 
from the water entity (Johannesburg Water SOC LTD) and 
361 customers (end-users) in Alexandra township. This was 
done in order to practically developed conceptual IWLMM 
known as MCDST-OM as well alignment with figure 10 
above.   

 
The principal component analysis (PCA) approach that is 
also known as exploratory factor analysis (EFA) was used 
in a MATLAB format to determine the number of 
components or factors that account for much of the 
variability in the data (Hastie et al., 2009 and Saunders et 
al., 2016). The final development and presentation of the 
developed IWLMM for developing counties is presented as 
a further sub-objective by the same authors of this paper.

 

 
5. CONCLUSIONS AND RECOMMENDATIONS 
 
This study elucidated the application of a new multi-criteria 
decision analysis method to assess the hydraulic-based 
water-loss management strategies in water supply system, 
emphasizing the structuring and analysis of group decisions. 
The research’ novelty is highlighted carefully through a 
comparative and decision making matrix, where basic 
hydraulic water loss assessment models such as NRW, SIV 
and water balance index in water supply system were 
combined with decision based MCDA approach to evaluate 
water loss management strategy. The proposed MCDA-
integrated framework presented in this example case study 
used the PROMETHEE II methodology and the D-Sight 
software sensitivity analysis. The study explicitly considered 
strategic objectives linked to finance, socioeconomic, 
environmental, health and safety, as well as technical and 
institutional governance considerations.  

Through the step-by-step decision-making process of a 
group, represented by 8 DM in this example, outcomes 
explicated that highly preferred options seem to be those 
which improve financial reliability. Technical capacity and 
sound institutional governance goals were those criteria that 
provide an organization with financial soundness. Outcomes 
also indicated that the crucial goal of financial optimization 
does not seem to be necessarily the best and most 
appropriate strategy when water-loss multi-criteria options 
are linked to a challenging socioeconomic setting such as 
an informal settlement. The D-Sight software is valuable for 
dealing with decision-making in the planning of complex 
water loss challenges and the ranking of the strategic 
objectives and ECs. The results show that even in cases 
where multiple criteria options exist, integrated and global 
results can still be achieved, thereby assisting the water 

IWLMIP
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(PI-3)

Technical 
Capacity

(PI-2)

Socio-Economic

(PI-4)

Financial 
Reliability

(PI-1)



utility in deciding which strategic objective(s) they should 
prioritize, resource, implement and monitor. The study 
limitations are that although 8 DMs were selected from the 
water utility, they may have yet to give a proper group 
decision and that their ranking of alternatives is solely based 
on their functional level in the water utility; hence their 
decision may be subjective. This proposed MCDA 
application is an effective decision-support tool envisaged to 
assist policymakers, water managers and water utilities. The 
tool supports policymakers in assessing and prioritizing 
overall strategies for water-loss reduction within WDS, 
specifically in developing nations. This is because some of 
these countries face socioeconomic and institutional 

governance challenges. The authors recommend further 
research on water loss management with larger data 
samples consisting of water utility DM, customers and other 
stakeholders. The proposed and other multi-criteria 
techniques should be tested also in other example regions 
to improve integrated group decision-making. The 
developed and other multi-criteria models should serve as 
an alternative or supportive option to assist water managers, 
policymakers, planners, social scientists and decision-
makers in properly assessing, prioritizing and selecting the 
best strategic objectives for reducing water losses in water 
distribution systems. 
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