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Bovine chromosomes 2 (BTA2) and 5 (BTA5) of purebred, half-sib progeny sired by five Japanese black bulls were 

genotyped using microsatellite DNA markers. The data were subjected to linkage analysis for the detection and 

mapping of segregating quantitative trait loci (QTL) influencing live weight, average daily gain and body 

measurements at weaning. Probability coefficients of inheriting allele 1 or 2 from the sire at specific chromosomal 

intervals were computed. The phenotypic data on progeny were regressed on these probability coefficients in a 

within-common-parent regression analysis. Fixed effects of sex, parity and season of birth as well as age as a 

covariate, were fitted in a linear model to the phenotypic data and subsequently analysed using QTL Express by 

generating an F-statistic through permutation tests at chromosome-wide significance thresholds over 10, 000 

iterations at 1 cM intervals. Highly significant (P<0.01) segregating QTL for body measurements were detected on 

BTA2 for hip width (1 cM) and chest depth (8 cM) in Sire Family 1 and pin bone width (16 cM) in Sire Family 3. Other 

significant QTL (P<0.05) detected were withers height (3 cM), hip height (4 cM), body length (4 cM), shoulder width (6 

cM), lumbar width (3 cM), thurl width (3 cM) and canon circumference (2 cM) in Sire Family 1, shoulder width (16 cM) in 

Sire Family 3 and thurl width (24 cM), pin bone width (19 cM), heart girth (26 cM) and abdominal width (69 cM) in Sire 

Family 4. Significant (P<0.05) QTL for live weight and average daily gain were detected on BTA2 for birth weight (5 cM) 

and weaning weight (3 cM) in Sire Family 1 and post-weaning average daily gain (68 cM) in Sire Family 4. BTA 5 

contained QTL for birth weight, pin bone width and heart girth in Sire Family 3 that were only suggestive and not 

significant. Such localization of economically important QTL as demonstrated in this study, will expedite genetic 

improvement via marker-assisted selection, gene introgression and positional cloning in Japanese black cattle. 
 
Key words: QTL mapping, Japanese Black cattle, BTA2, BTA5, body measurements, live weight, daily gain. 

 
INTRODUCTION 

 
Use of DNA markers to account for genetic variation for 

quantitative traits provides producers a tool to assist in 

genetic selection of superior animals (Allan et al., 2007).  
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Whereas some marker-assisted selection is currently 
practiced in the beef cattle industry, a limited number of 
markers have been developed for use by cattle producers, 
and these markers explain a relatively small proportion of 
the genetic variation for a limited number of traits (Dek-
kers, 2004). Therefore, the need continues for more 
genetic markers associated with economically important 



 
 
 

 

traits. 
Biotechnological developments in molecular genetics 

that culminated in the availability of microsatellite DNA 
markers have been instrumental in the construction of 
genetic maps across livestock species. In structured pe-
digree populations, these markers are useful in identify-ing 
inheritance patterns of linked segments of the geno-me. 
The establishment of significant associations of mar-ker 
alleles with an animal’s phenotype suggests linkage of the 
markers to quantitative trait loci (Malau-Aduli et al., 
2003a). Microsatellites and single nucleotide polymer-
phisms (SNPs) are among the best genome markers and 
useful ones can be included in marker -assisted selection 
programmes to increase the rate of genetic progress 
(Georges et al., 1993). A plethora of researchers (White et 
al., 2007; Casas et al., 2007; Lusk, 2007; Rincker et al., 
2006; Casas and Stone, 2006; Schenkel et al., 2005; Sto-
ne et al., 2005; Casas et al., 2005; White et al., 2005; 
Nkrumah et al., 2005; Kneeland et al., 2004) have repor-
ted quantitative trait loci (QTL) or associations between 
SNP markers and beef traits in breeds of cattle other than 
the Japanese black (Wagyu). Continued validation of ge-
netic markers for economically important traits is crucial to 
establishing marker-assisted selection as a tool in the 
cattle industry (Allan et al., 2007). Recently, Van Eenen-
naam et al. (2007) carried out a validation test for the as-
sociations between 3 commercially available genetic mar-
kers and beef traits in conjunction with the US National 
Beef Cattle Evaluation Consortium and emphasised the 
need for unbiased and independent validation studies to 
help build confidence in DNA marker technology.  

Mizoshita et al. (2004) utilised microsatellite markers to 
detect quantitative trait loci (QTL) for growth and carcass 
traits in only one family of Japanese black cattle. More 
recently, we utilised microsatellite markers across five fa-
milies of purebred Japanese black cattle and reported the 
detection of QTL for body shape conformation measure-
ments (Malau-Aduli et al., 2005a) and growth (Malau-
Aduli et al., 2005b) on bovine chromosome one (BTA1). 
Preliminary genome-wide scanning in our laboratory 
using only 30 animals (unpublished data) had suggested 
BTA1, BTA2 and BTA5 as chromosomes containing 
segregating QTL significantly influencing growth and 
body conformation traits in Japanese black cattle. 
Therefore, in this confirma-tory study with a larger data 
set of genotyped animals, we report the genetic linkage 
between microsatellite DNA markers and QTL on BTA2 
and BTA5 influencing live weight, daily gains and body 
measurements at weaning of Japanese black cattle. 

 

MATERIALS AND METHODS 
 
Animals and management 
 
One hundred and thirty-two paternal half-sib progeny of five Japa-

nese black sires produced by artificial insemination at the Depart-
ment of Livestock and Grassland Science, National Agricultural 

Research Centre for Western Region, Oda, Shimane Prefecture, 

  
  

 
 

 
Japan, were genotyped for this study. Sires 1 and 2 belonged to the 
average daily gain line while Sires 3, 4 and 5 belonged to the beef 
marbling score. Routine management of the animals involved rec-
ording of weight at birth and monthly thereafter, until 18 months of 
age. Body shape and conformation measurements on withers hei-
ght, hip height, hip width, body length, chest width, chest depth, 
shoulder width, lumbar width, thurl width, pin bone width, rump len-
gth, cannon circumference, chest girth, abdominal width and abdo-
minal girth were also taken monthly. Calves were allowed to suckle 
their dams in addition to being fed 1.5 kg/day/head of concentrate 
and 1 kg/day/head of corn silage until 5 months of age when they 
were weaned. After weaning, they were moved to the grower’s barn 
and still raised on concentrates (37% corn grain, 39% rice bran, 
17% soybean meal, 7% minerals) and corn silage until 10 months 
of age. Between 10 and 18 months of age, they were moved to 
another barn and fed intensively. The proportions of the ration on 
dry matter basis were: 61% corn grain, 34% soybean and corn 
glutein meal, 2% bran and 3% mineral. For every 20 kg bag, this 
ration provided an estimated 21% crude protein, 3.5% crude fat, 5% 
crude fibre, 7% ash, 0.6% calcium, 0.40% phosphate and a total 
digestible nutrient of 77%. From 18 to 24 months of age, breeding 
females were returned to the calving barn while steers were moved 
to the fattening barn and raised primarily on “Mosa meal” a specially 
formulated fattening ration containing 77% corn and rye grain, 
10.5% wheat and rice bran, 9% soybean oil meal and 3.5% mineral 
supplement. At all ages, routine veterinary vaccinations and health 
checks were observed. 
 

 
Extractions of genomic DNA 
 
Following the method of Sambrook et al. (1989) and described in 

detail elsewhere (Malau-Aduli et al. 2003b, 2005a), genomic DNA 

was extracted and prepared from blood leucocytes and sperm. 
 

 
Polymerase chain reaction (PCR) 
 
PCR pre-mix (13 µl) that comprised of: 10.55 µl of distilled water, 
1.04 µl of 2.5 mM dNTP mixture (Takara, Shiga, Japan), 1.3 µl of 10 
x buffer containing 15 mM MgCl2 and 0.11 µl of 25 mM of MgCl2 
was prepared. A primer set (12.5 pmol/ µl) containing microsatellite 
DNA markers FAM (blue), HEX (yellow) and TET (Green) supplied 
by the Shirakawa Institute of Animal Genetics, Fukushima, Japan, 
based on the bovine genetic map at the U.S. Meat Animal Resea-
rch Centre (Kappes et al., 1997; http://sol.marc.usda.gov) was 
added to the PCR pre-mix. Genomic DNA (1 µl) (conc of 20 ng/µl) 
was added followed by 0.5 µl of Taq polymerase enzyme (conc of 
0.75 units/µl) containing 50% glycerol (Takara, Japan). The PCR 
plates were hotplate-sealed and subjected to PCR in a DNA 
thermal cycler. The annealing temp settings were: 50, 55 and 60ëC. 
The PCR products were then mixed with DNA size markers in diff-
erent loading combinations containing 4 µl of HEX, 1 µl of FAM and 
1 µl of TET, properly labelled and stored for genotyping. 
 

 
Genotyping 
 
Multiplex genotyping was carried out. About 0.8 µl of the mixed 
PCR products was added to 4.5 µl of DNA size marker, centrifuged 
for 1 min at 1000 rpm and denatured using the PCR machine at a 
denaturing temperature of 94ëC for 9 min. The denatured products 
were subjected to electrophoresis and genotyping in an ABI 377 
DNA Sequencer. The number of informative microsatellite DNA 
markers utilized for the genotyping in each family is portrayed in 
Tables 1 and 2 for chromosomes 2 and 5 respectively. 



 
 
 

 
Table 1. Microsatellite DNA markers used for genotyping chromosome 2 in the 5 Japanese Black cattle families and their relative positions on the map (cM) 

 

Family Marker Position Family Marker Position Family Marker Position Family Marker Position Family Marker  Position 

1 TGLA44 2.6 2 TGLA44 2.6 3 BM3627 7.6 4 BMS1928 6.9 5 BM8139  8.2 

1 TGLA431 11.1 2 DIK621 4.6 3 BMS803 44.0 4 BMS711 21.3 5 BMS2321  14.0 

1 TEXAN2 24.2 2 ILSTS026 9.6 3 RM356 55.1 4 TGLA57 46.2 5 BMS711  21.3 

1 ETH121 36.9 2 DIK1172 16.8 3 BM4440 58.3 4 BMS4035 55.0 5 BMS2725  41.8 

1 BMS803 44.0 2 DIK1081 25.6 3 BMS1264 63.3 4 BMS4029 61.3 5 BMS4002  47.9 

1 ILSTS082 62.0 2 ETH121 36.9 3 RM041 72.3 4 BM9019 67.5 5 BMS4012  51.0 

1 BMS1866 86.1 2 MNB-187 57.3 3 BMS1866 86.1 4 BMS4008 71.7 5 RM326  55.6 

1 BM6444 91.8 2 BMS1126 59.7 3 BM6444 91.8    5 BMS4030  59.2 

1 BM1223 95.9 2 BM2808 63.3 3 INRA135 102.6    5 BMS4029  61.3 

1 INRA135 102.6 2 BMS2 65.0 3 BM4117 104.9    5 INRA119  68.7 

1 BM4117 104.9 2 TEXAN1 72.0 3 BL1028 109.7    5 BMS4008  71.7 

1 BL1028 109.7 2 BM6444 91.8  IDVGA37 112.0    5 BM8246  76.2 

1 IDVGA-37 112.0 2 INRA135 102.6  IDVGA-2 121.8    5 BMS4006  79.4 

1 IDVGA-2 121.8 2 BL1028 109.7           

1 OARFCB11 124.4 2 DIK1155 113.1           

Total  15   15   13   7  13  
 

 
Traits analyzed 
 
Offspring of the five sires born between 1997 and 2002 
were evaluated (SAS, 2002) for live weight, average daily 
gain and the following 15 body shape and conformation 
measurements at weaning (5 months of age): withers 
height, hip height, hip width, body length, chest width, chest 
depth, shoulder width, lumbar width, thurl width, pin bone 
width, rump length, cannon circumference, chest girth, 
abdominal width and abdominal girth. 

 
QTL analysis 
 
We adopted the methods of Knott et al. (1996), Haley and 

Knott (1992) and de Koning et al. (1998, 2001) for the 

detection and mapping of QTL in half-sib populations using 

least squares simple regression. We used the QTL Express 

(http://qtl.cap.ed.ac.uk/) developed by Seaton et al. (2002) and 

based on the methods of the researchers mentioned above for 

the QTL analysis. The half-sib model of QTL com-puter 

program with a web-based user interface Express run within 

and across sires, implemented the analysis in a two- 

 

 
step procedure: Firstly, microsatellite DNA marker data on 

progeny and their common parent (sire) were combined in a 

multi-point approach to calculate the probabilities of inheriting 

allele 1 or 2 from the sire at specific chromosomal intervals. 

These probabilities were combined into coefficients with val-

ues between 0.0 and 1.0. Secondly, the phenotypic data on 

progeny were regressed on these coefficients in a within-

common-parent regression analysis. A linear model contain-ing 

the fixed effects of sire, sex, parity and season of birth as well 

as age as a covariate, was fitted to the probability coeffi-cients 

and phenotypic data. Appropriate F-statistic thresholds for a 

P<0.05 chromosome-wise type 1 error rate were gene-rated by 

permutation analysis as described by Churchill and Doerge 

(1994), Doerge and Churchill (1996) (and applied to other half-

sib studies by Spelman et al. (1996) and Vilkki et al. (1997). In 

determin-ing significant and suggestive thresholds, the QTL 

Express software (Seaton et al. 2002) computed both the F-

statistics and the F-threshold at P<0.05 chromosome-wise 

level. QTL was classified as significant when the F-statistic 

exceeded the F-threshold indicating a marker-trait association. 

For the determination of a sugges-tive association, which is the 

expected number of type I errors in the experiment when the 

null hypothesis of no QTL segre- 

 

 
gating is true, we followed the procedure of de Koning et al. 

(1998). They stated that the overall significance used for the 

chromosomal test when undertaking a scan of n independent 

linkage groups (or n [linkage groups x independent traits]) can 

be calculated from the nominal significance level applied to a 

single linkage group following Bonferoni: 
 

Poverall = 1 – (1 – Pnominal)
n
. 

 
A very good and simple approximation for the solution to 
this equation is,  

Pnominal  Poverall/n. 
 
The suggestive significance level can then be obtained 

from the binomial distribution as: 
 

Psuggestive = 1/n. 
 

RESULTS 
 
Informative microsatellite DNA markers and 

positions on the linkage map 
 
Portrayed in Tables 1 and 2 are the microsatellite 



  
 
 

 
Table 2. Microsatellite DNA markers used for genotyping chromosome 5 in the 5 Japanese Black cattle families and their relative positions on the map (cM) 

 

Family Marker Position Family Marker Position Family Marker Position Family Marker Position Family Marker  Position 

1 BMS1928 6.9 2 BM8139 8.2 3 BMS2321 14.0 4 BMS1928 6.9 5 BM8139  8.2 

1 BMS711 21.3 2 TGLA57 46.2 3 ILSTS104 28.2 4 BMS711 21.3 5 BMS2321  14.0 

1 ILSTS104 28.2 2 BMS4012 51.0 3 BMS4002 47.9 4 TGLA57 46.2 5 BMS711  21.3 

1 MB055 32.0 2 BMS4013 61.3 3 BMS4012 51.0 4 BMS4035 55.0 5 BMS2725  41.8 

1 TGLA57 46.2 2 BMS4001 64.7 3 BMS4035 55.0 4 BMS4029 61.3 5 BMS4002  47.9 

1 BMS4012 51.0 2 BM9019 67.5 3 RME36 63.0 4 BM9019 67.5 5 BMS4012  51.0 

1 BMS4035 55.0 2 BL26_1 77.7 3 BM8246 76.2 4 BMS4008 71.7 5 RM326  55.6 

1 RM326 55.6 2 BMS4006 79.4 3 BMS119 88.6 4 BMS4048 76.2 5 BMS4030  59.2 

1 RME36 63.0 2 URB038 80.6 3 BMS4019 98.8 4 URB038 80.6 5 BMS4029  61.3 

1 INRA049 67.5 2 MCM130 83.3 3 UWCA46 113.8 4 BMS4010 87.1 5 INRA119  68.7 

1 BM65O6 69.2 2 BMS4010 87.1 3 BMS599 125.8 4 BM864 88.2 5 BMS4008  71.7 

1 URB038 80.6 2 BM864 88.2    4 BMS1170 92.8 5 BM8246  76.2 

1 BMS4052 94.6 2 BMS1170 92.8    4 BMS4019 98.8 5 BMS4006  79.4 

1 BMS4028 95.6 2 BMS4028 95.6    4 BMS4011 102.1 5 BMS4010  87.1 

1 BMS4040 98.8 2 BMS4019 98.8    4 BMS4049 114.3 5 BMS4019  98.8 

1 BMS1789 100.9 2 BMS1789 100.9    4 BMS918 118.1 5 BMS1757  108.3 

1 BMS4044 128.7 2 BMS1939 104.1    4 BMS599 125.8 5 BMS4044  128.7 

1 BMS2263 135.1 2 BMS4039 108.3    4 BMS4044 128.7     

   2 BM3205 113.8    4 BMS922 135.5     
   2 BMS599 125.8           

   2 BMS4043 128.7           

   2 BMS2263 135.1           

   2 BMS4014 135.5           

Total  18   23   11   19  17  
 
 

 

DNA markers and their relative positions on the 
BTA2 and BTA5 linkage maps respectively, that 
were utilized in genotyping the sires and half -sib 
progeny. The tables show that on BTA2, 15, 15, 
13, 7 and 13 markers were informative for fami-
lies 1, 2, 3, 4 and 5 respectively (Table 1), while 
on BTA5, 18, 23, 11, 19 and 17 markers were in-
formative for the families 1, 2, 3, 4 and 5, respect- 

 
 

 

tively (Table 2). 

 

Live weight, daily gains and body 

measurements at weaning 
 
The means and standard deviations of live weight 

(kg), daily gains (kg/day) and body conformation 

measurements (cm) at weaning in the 5 Japanese 

 
 

 

black families are shown in Table 3. It was evident 
that in all families, almost all of the body confor-
mation measurements within traits were similar. 
The only clearly visible sign of significant differ-
rences between families was in chest girth 
(CHESTGTH) measurements in which Families 1 
and 2 (125.9 and 127.2 cm respectively) were 
higher than in Families 3, 4 and 5 (121.7, 123.4 



 
 
 

 
Table 3. Means ±S.D. of live weight (kg), daily gains (kg/day) and body measurements at weaning (cm) in the progeny of 

5 Japanese Black sire families. 
 

Trait/Acronym Family 1 Family 2 Family 3 Family 4 Family 5 

BWT Birth weight (kg) 34.7 ± 4.7
a
 34.0 ± 4.8

a
 28.7 ± 5.1

b
 28.7 ± 3.3

b
 26.9 ± 5.4

b
 

WT6 Weaning weight (kg) 163.9 ± 21.7
b
 172.6 ± 19.4

a
 177.6 ± 20.5

a
 176.7 ± 22.9

a
 174.3 ± 31.7

a
 

WT12 Yearling weight (kg) 300.9 ± 31.8
a
 284.7 ± 34.1

b
 299.9 ± 33.5

a
 283.6 ± 29.1

b
 281.7 ± 35.2

b
 

PREWADG (kg/day) 0.7 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.2 

POSTWADG (kg/day) 0.8 ± 0.2
a
 0.7 ± 0.2

a
 0.6 ± 0.1

b
 0.6 ± 0.2

b
 0.6 ± 0.2

b
 

WHT Withers height 99.5 ± 3.9 100.9 ± 3.5 98.5 ± 3.5 97.5 ± 2.7 97.6 ± 4.0 

HIPHT Hip height 103.1 ± 3.9 103.0 ± 3.0 101.0 ± 3.8 101.1 ± 3.8 98.7 ± 4.1 

BL Body length 106.5 ± 5.9 108.1 ± 5.0 103.2 ± 7.5 103.2 ± 4.5 101.9 ± 5.3 

CHESTWD Chest width 28.1 ± 2.2 29.5 ± 2.3 27.7 ± 2.6 26.9 ± 2.2 27.2 ± 1.6 

SHOUWD Shoulder width 31.2 ± 2.6 31.4 ± 2.1 28.4 ± 2.2 28.6 ± 2.0 27.4 ± 2.3 

CHESTDP Chest depth 46.3 ± 1.8 46.6 ± 1.5 44.7 ± 1.8 45.5 ± 1.4 43.8 ± 2.2 

HIPWDT Hip width 28.3 ± 1.8 29.0 ± 1.3 26.3 ± 2.1 28.1 ± 1.4 27.4 ± 1.5 

LUMBARWD  Lumbar width 22.7 ± 1.5 23.1 ± 1.0 21.1 ± 2.1 22.6 ± 1.3 22.0 ± 1.3 

THURLWD Thurl width 33.0 ± 2.2 33.6 ± 1.7 31.0 ± 1.6 31.3 ± 1.9 31.0 ± 2.0 

PINBWD Pin bone width 20.5 ± 2.1 20.6 ± 1.3 18.6 ± 1.9 18.9 ± 1.0 18.1 ± 1.4 

RUMPL Rump length 35.2 ± 2.1 35.8 ± 1.8 34.6 ± 1.7 35.3 ± 1.4 34.4 ± 1.7 

CANNONCIR Cannon circumference 14.4 ± 0.9 14.7 ± 0.9 13.8 ± 1.0 13.5 ± 0.8 13.4 ± 0.9 

CHESTGTH Chest girth 125.9 ± 5.2
a
 127.2 ± 4.3

a
 121.7 ± 4.9

b
 123.4 ± 3.8

b
 120.2 ± 5.9

b
 

ABDWD Abdominal width 37.0 ± 2.5 37.7 ± 2.5 35.4 ± 2.9 36.5 ± 2.2 35.5 ± 1.9 

ABDGTH Abdominal girth 144.0 ± 7.0 143.5 ± 6.1 138.5 ± 7.4 140.6 ± 6.0 138.0 ± 7.2 

No. of progeny 40 36 19 17 20 
 

Means in rows bearing different superscripts significantly differ between families.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CHESTDP HIPWD LUMBWD THURLWD PINBWD  

 
Figure 1. BTA2 map of F-statistics in Sire Family 1 depicting 
highly significant (P<0.01) QTL for chest depth (CHESTDP) at 

8cM and hip width (HIPWD) at 1cM. Bold line represents the 
chromosome-wide F-threshold. 

 

and 120.2 cm respectively). 

 

Allele substitution effects, estimated QTL locations 

and chromosome-wide thresholds 
 
Allele substitution or sire QTL effects, estimated QTL 

locations and chromosome-wide threshold statistics for 

 
 
 

 

live weight and body conformation traits in the 5 Japa-nese 

black families are shown in Table 4. Highly signi-ficant 

(chromosome-wide P<0.01) segregating QTL for body 

measurements were detected on BTA2 for hip width (1 cM), 

chest depth (8 cM) in Sire Family 1 (Figure 1) and pin bone 

width (16 cM) in Sire Family 3 (Figure 2). BTA 2 harboured 

significant QTL (Figure 3) at the chromosome-wide P<0.05 

level for 10 other body measurement traits: withers height (3 

cM), hip height (4 cM), body length (4 cM), shoulder width (6 

cM), lumbar width (3 cM), thurl width (3 cM) and canon 

circumference (2 cM) in Sire Family 1, shoulder width (16 

cM) in Sire Family 3 and thurl width (24 cM), pin bone width 

(19 cM), heart girth (26 cM) and abdo-minal width (69cM) in 

Sire Family 4. Significant (P<0.05) QTL for live weight and 

average daily gain were detected on BTA2 for birth weight (5 

cM) and weaning weight (3 cM) in Sire Family 1 (Figure 4) 

and post-weaning average daily gain (68 cM) in Sire Family 

4. BTA 5 contained QTL for birth weight, pin bone width and 

heart girth in Sire Family 3 that were only suggestive and not 

significant 

 

DISCUSSION 
 
Approximately 43% of domestic beef production in Japan 

is supplied by the Japanese Black breed of cattle and its 

genetic superiority for meat quality and carcass value is 
well known (Mukai et al. 2004). A study on consumer re- 



  
 
 

 
Table 4. Allele substitution/Sire QTL effects ± standard errors (ß ± S.E.) and estimated QTL locations (cM) for liveweight (kg), average daily 

gains (kg/day) and body measurement (cm) traits in Japanese Black cattle families. 
 

Sire Trait Chromosome QTL Sire QTL/ Allele substi- F-statistics F- Significance 

Family   location tution effect (ß ± S.E)  threshold (chromosome-wide) 

1 BWT 2 5cM -6.2 ± 1.87 kg 10.78 8.78 P<0.05 

1 WT6 2 3cM -29.7 ± 9.60 kg 9.57 8.97 P<0.05 

1 WHT 2 3cM -4.8 ± 1.52 cm 10.04 9.15 P<0.05 

1 HIPHT 2 4cM -5.0 ± 1.58 cm 10.03 9.18 P<0.05 

1 BL 2 4cM -8.2 ± 2.30 cm 12.82 9.29 P<0.05 

1 SHOUWD 2 6cM -3.2 ± 0.97 cm 10.69 8.91 P<0.05 

1 CHESTDP 2 8cM -2.7 ± 0.61 cm 20.00 14.07 P<0.01 

1 HIPWD 2 1cM -3.4 ± 0.75 cm 19.59 14.37 P<0.01 

1 LUMBWD 2 3cM -2.0 ± 0.65 cm 9.55 9.13 P<0.05 

1 THURLWD 2 3cM -3.3 ± 0.89 cm 13.64 9.31 P<0.05 

1 CANCIR 2 2cM -1.0 ± 0.31 cm 11.66 8.80 P<0.05 

2 POSTWADG 2 60cM 0.24 ± 0.08 kg/day 8.62 8.68 Suggestive 

2 WT12 2 60cM 40.6 ± 0.08 kg 7.57 8.58 Suggestive 

3 SHOUWD 2 16cM 4.55 ± 1.25 cm 13.20 11.78 P<0.05 

3 HIPWD 2 21cM 3.45 ± 0.98 cm 12.29 12.45 Suggestive 

3 THURLWD 2 14cM 3.17 ± 0.94 cm 11.32 11.44 Suggestive 

3 PINBWD 2 16cM 6.07 ± 1.01 cm 35.87 23.87 P<0.01 

4 POSTWADG 2 68cM -0.26 ± 0.04 kg/day 37.44 31.57 P<0.05 

4 POSTWADG 2 24cM 17.40 ± 2.74 cm 40.36 37.81 P<0.05 

4 PINBWD 2 19cM 9.08 ± 1.17 cm 60.34 30.67 P<0.05 

4 HEARTGT 2 26cM 53.39 ± 6.53 cm 66.71 44.60 P<0.05 

4 ABDWD 2 69cM -5.26 ± 0.79 cm 44.07 40.06 P<0.05 

3 BWT 5 69cM 4.74 ± 1.59 kg 8.83 11.11 Suggestive 

3 PINBWD 5 108cM 2.34 ± 0.81 cm 8.24 11.77 Suggestive 

3 HEARTGT 5 117cM 4.27 ± 1.46 cm 8.49 11.66 Suggestive  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CHESTDP HIPWD LUMBWD THURLWD PINBWD 

 
Figure 2. BTA2 map of F-statistics in Sire Family 3 de-

picting highly significant (P<0.01) QTL for pin bone width 
(PINBWD) at 16cM. Bold line represents the chromo-

some-wide F-threshold. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
BL SHOUWD HIPHT WHT CHESTWD 

 
Figure 3. BTA2 map of F-statistics in Sire Family 1 dep-
icting significant (P<0.05) QTL for withers height (WHT) 
at 3cM, hip height (HIPHT) at 4cM, body length (BL) at 
4cM and shoulder width (SHOUWD) at 6cM. Bold line 
represents the chromosome-wide F-threshold. 

  
moto, 2004) indicated the need for beef cattle breeders to 

quirements for beef quality in Japan (Sasaki and Mitsu- meet the specifications and increasing demands of Japa- 



 
 
 

 

nese consumers. In order to meet some of these challen-
ges, we investigated the relationship between body mea-
surements and body weight (Malau-Aduli et al., 2004a) 
and correlations between mitochondrial DNA polymer-
phism, maternal lineage and postnatal growth to yearling 
age (Malau-Aduli et al., 2004b) of Japanese black cattle. 
Animal improvement has been achieved by selection ba-
sed on either phenotype or predicted additive genetic me-
rit of superior animals for production traits. Molecular bio-
logy techniques allow the identification of genetic varia-
tion at specific loci and the association between QTL and 
production traits. The final goal is to use marker assisted 
selection to improve the genetic gain achieved by selec-
tion as a result of higher accuracy on the estimation of an 
animal’s genetic value (Tambasco et al., 2003). The phe-
nomenon of genetic linkage means that each marker can 
be used to follow the inheritance of a section of the linked 
chromosome. However, markers have to be very closely 
linked to the causative mutation in the trait gene if they 
are to remain associated with specific QTL alleles thro-
ugh several generations of selection and therefore be 
useful in practical breeding programmes. If a genetic 
marker and a trait are significantly linked, there is a ten-
dency for such associations to be maintained at a popu-
lation level. This phenomenon of linkage disequilibrium 
could be exploited to locate the trait genes using single 
nucleotide polymorphism (SNPs) that is where two DNA 
sequences differ by a single base. Napolitano et al. 
(1996) reported the lo-calization of three microsatellites 
IDVGA-2, IDVGA-3 and IDVGA-46 on bovine chromo-
somes 2, 11 and 19 respectively, and their association 

with beef performance traits in F1 Piemontese x Chianina  
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Figure 4. BTA2 map of F-statistics in Sire Family 1 depicting 
significant (P<0.05) QTL for live weight at birth (BWT) at 5cM 
and liveweight at 6 months of age (WT6) at 3cM. Bold line 
represents the chromosome-wide F-threshold. 

 

crossbred cows. Of the three microsatellites, IDVGA-46 

was reported to be the best marker for most beef confor- 

 
 
 
 

 

mation traits in this crossbred population and that ani-
mals homozygous for allele 205 gave the best results in 
terms of linkage with segregating QTL for beef conforma-
tion (Napolitano et al., 2001). Their study examined only 
7 body conformation measurements–Withers height, bo-
dy length, chest width, chest depth, chest girth, rump len-
gth and pelvis width. In our present study, we examined 
15 body conformation measurements and detected highly 
significant QTL on chromosome 2 for hip width and chest 
depth located at 1 cM and 8 cM respectively (Sire Family  
1) and for pin bone width at 16cM in Sire Family 3. The 
implication is that the bracketing microsatellite markers 
TGLA44 and TGLA431 flanking this interval in Sire Family 
1 and BM3627 and BMS803 in Sire Family 3 can be used 
in marker-assisted selection to introduce or ret-ain the 
beneficial QTL allele. Our findings in this study clearly 
demonstrated that the chromosomal interval 1 - 6cM on 
BTA2 harboured significant QTL (P<0.05) for birth weight, 
weaning weight, withers height, hip height, body length, 
shoulder width, lumbar width, thurl width and canon 
circumference. In other breeds of cattle, Casas et al. 
(1998) reported that a locus near the centromere of 
bovine chromosome 2 was responsible for muscle hyper-
trophy in two half-sib families of Belgian Blue x MARC III 
and Piedmontese x Angus and confirmed the location to 
be 4 cM with a 95% confidence interval between 2 – 6 cM. 
This interval has been recognised as one harbouring the 
myostatin gene (Casas et al., 2000). Bovine chromosome 
2 has also been shown to harbour QTL significantly lin-
ked to carcass quality, for instance, MacNeil and Grosz 
(2002) detected a significant QTL for marbling in Here-ford 
x Composite Double backcross cattle located at 122 cM 
with a 95% confidence interval from 112–132 cM bet-
ween the microsatellite markers IDVGA-2 and FCB11. 
Grosz and Macneil (2001) using this same population, had 
earlier reported a significant QTL for birth weight on 
chromosome 2 located at 114 cM in the interval between 
BM2113 and OarFCB11 microsatellite markers. In a half-
sib family of Brahman x Hereford cattle, Casas et al. 
(2003) reported the detection of putative QTL for birth 
weight on bovine chromosomes 1, 2 and 3 Kim et al. 
(2003) also detected a signify-cant QTL for birth weight on 
bovine chromosome 2 in a cross-bred population of Angus 
x Brahman. More recently, Li et al. (2004a) iden-tified and 
fine-mapped QTL for backfat on bovine chro-mosomes 2, 
5, 6, 19, 21 and 23 in a commercial line of Beefbooster 
cattle. Our detection of significant QTL for birth weight on 
bovine chromosome 2 in this study is in agreement with 
these reports.  

Even though there was suggestive evidence in our stu-
dy that chromosome 5 harboured QTL for birth weight (69 
cM), pin bone width (108 cM) and heart girth (117 cM), 
these were not significant as the F-statistics were below 
the chromosome-wide threshold. However, published lite-
rature has demonstrated that bovine chromosome 5 har-
boured significant QTL for preweaning average daily gain 
at 55 – 70 cM, average daily gain at 70 – 80 cM and birth 



 
 
 

 

weight at 0 – 30 cM (Li et al., 2002), fat depth (40 – 80 
cM), yield grade and retail product yield at 62 – 72 cM 
(Casas et al., 2000), birth weight at 49 cM (Kim et al., 
2003), carcass yield at 45 -54 cM (Mizoshita et al. 2004) 
and backfat at 65.4 – 70 cM (Li et al., 2004a, 2004b). 
Other earlier studies in cattle that had detected QTL on 
chromosome 5 include those of Davis et al. 1998 (birth 
weight located at 90 cM) and Stone et al. (1999) who rep-
orted that the interval 50 – 80 cM harboured QTL for rib 
bone and dressing percentage. Some of the above cattle 
herds were purebreds, others were crossbreds and differ-
ent population sizes, sire families and estimation proced-
ures were utilised, hence an expected variation in results.  

There were significant differences between the sire 

families in birth weight (BWT), postweaning average daily 

gain (POSTWADG) and chest girth (CHESTGTH) in which 

Families 1 and 2 were higher than in Families 3, 4 and 5. 

This was not entirely surprising because Sires 1 and 2 had 

been selected for average daily gain (daily gain line) while 

Sires 3, 4 and 5 belonged to the beef marbling score (BMS) 

line. Chest girth is an important body conformation 

measurement that has been reported in Japanese black 

cattle. For instance, Mukai et al. (1995) studied the genetic 

relationships between body measurements, growth and field 

carcass performance traits and reported highly significant 

and positive genetic correlations between chest girth and 

carcass weight at the beginning, middle and end of 

performance testing of 0.64, 0.77 and 0.79 respectively. 

They concluded that it was possible to improve total merit of 

the carcass by introducing chest girth into performance 

testing of Japa-nese black cattle. Other studies (Oyama et 

al., 1996; Kitamura et al., 1999) on genetic relationships 

among recorded body measurement traits, reproductive 

traits of breeding females and carcass traits in Japanese 

black cattle buttress the finding of Mukai et al. (1995) that 

there is an unfavourable or low correlation between chest 

girth and beef marbling score ( -0.07, 0.28 and 0.21 at the 

beginning, middle and end of performance testing res-

pectively). It is this low correlation that has been ob-ser-ved 

in this present study with the BMS line families hav-ing lower 

chest girth measurements than the daily gain line families. 

Other body conformation measurements like chest depth, 

thurl width and withers height were also found to be 

genetically correlated with field carcass wei-ght ranging from 

0.64 to 0.90 (Mukai et al. 1995, 2000), indicating that body 

conformation measurements can be valuable in selection for 

meat quality as well. Data from our group (Malau-Aduli et al., 

2004a, 2004b) portray a significant and positive relationship 

between body con-formation measurements and average 

daily gain to wean-ing and yearling age. Thus, the 

identification of significant QTL in the present study holds 

hope for the utilization of markers closely linked to these 

traits for the implement-tation of marker-assisted selection 

for growth and car-cass traits. We hypothesise that single 

nucleotide polymer-phism (SNP) of the myostatin gene, 

which acts as a negative regulator of muscle growth, 

  
  

 
 

 

could possibly acco-unt for the segregating QTL influencing 

these growth and body measurement traits detected in our 

study. Sequencing to find SNPs in four regions (promoter, 

exon 1, exon 2 and exon 3) of the myostatin gene in these 

sires is now in progress in our laboratory. We conclude that 

the detection of these QTL boosts the prospects of 

implementing mar-ker- assisted selection for live weight, 

average daily gain and body measurement traits in Japa-

nese black cattle. Furthermore, this finding could pave the 

way for positional cloning using candidate genes in Japa-

nese black cattle. 
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