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Genetic algorithms (GA) are categorized as search heuristics and have been broadly applied to optimization problems. 

These algorithms have been used for solving problems in many applications. Nevertheless, it has been shown that 

simple GA is not able to effectively solve complex real world problems. For proper solving of such problems, knowing 

the relationships between decision variables which is referred to as linkage learning is necessary. In this paper, a 

linkage learning approach is proposed that utilizes the special features of decomposable problems to solve them. The 

proposed approach is called Local optimums based linkage learner (LOLL). The LOLL algorithm is capable of 

identifying the groups of variables which are related to each other (known as linkage groups), not minding if these 

groups are overlapped or different in size. The proposed algorithm, unlike other linkage learning techniques, is not 

done along with optimization algorithm, but it is done in a whole separated phase from optimization search. After 

finding linkage group information by LOLL, the optimization search can use this information to solve the problem. 

LOLL is tested on some benchmarked decomposable functions. The results show that the algorithm is an efficient 

alternative to other linkage learning techniques. 
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INTRODUCTION 

 
A competitive market is a market in which a great number 
of buyers and sellers are busy trading independently. As 
a result, none of the market members can influence the 
price greatly, because the announced prices are almost 
fixed and also low. In this market,  
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because of the competition, sellers use decision making 
process under emergency conditions to sell products 
more. They use their past experiences to present 
suggestions close to the interests of their customers and 
attract them more quickly.  

Genetic algorithms are the most popular algorithms in 
the category of evolutionary algorithms. These algorithms 
are widely used for solving real-world problems. However 
when it comes to solving difficult problems, GA has 
deficiencies. One of the main problems of simple GAs is 
their blindness and oblivion about the linkage between 
variables. The importance of linkage learning was 
recognized in success of the optimi-zation search after a 
long time. There are a lot of linkage learning techniques. 
Some are based on perturbation methodology, some are 
categorized in the class of probabilistic model building 
approaches and some are the 
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techniques that adapt the linkages along with the 
evolutionary process by employing special operators or 
representations.  

There are lots of approaches in the class of linkage 
adaptation techniques. Linkage learning genetic algorithm 
(Newman, 1991) uses a special probabilistic expression 
mechanism and a unique combination of the (gene 
number, allele) coding scheme and an exchange 
crossover operator to create an evolvable genotypic 
structure. Punctuation marks are added to the chromo-
some representation (Miller, 1984). These bits indicate if 
any position on the chromosome is a crossover point or in 
another words, a linkage group boundary. Linkage 
evolving genetic operator (LEGO) (Pelikan, 2005) is 
another linkage adaptation strategy that in order to 
achieve the linkages, each gene has associated with it 
two Boolean flags. These two flags determine whether 
the gene will link to the genes to its left and right. The two 
adjacent genes are assumed to be linked if the 
appropriate flags are both set to true. Therefore building 
blocks are consecutive linked genes on the chromosome.  

Linkage learning is necessary when there are epistatic 
linkages between variables. Estimation of distribution 
algorithms (EDAs) are among the most powerful genetic 
algorithms which try to find these epistatic linkages 
through building probabilistic models that summarize the 
information of promising solutions in the current 
population. In another words, by using probabilistic 
models these algorithms seek to find linkage between 
variables of the problem. In each generation they find as 
much information as possible about the variable 
dependencies from the promising solutions of the 
population. Knowing this information, the population of 
the next generation is created. There are numbers of 
estimation of distribution algorithms which differ in the 
model building part. Bayesian networks and marginal 
product models are examples of the probabilistic models 
that have been used by BOA (Audebert and Hapiot, 
1993) and eCGA (Hillman, 1987). Although EDAs scale 
polynomial in terms of number of fitness evaluations, the 
probabilistic model building phase is usually computa-
tionally expensive. Perturbation-based method, detect 
linkage group by injecting perturbations in the population 
of individuals and inspecting the fitness change caused 
by the perturbation. Gene expression messy genetic 
algorithm (gemGA) which uses transcription operator for 
identifying linkage group is classified in this category. 
 

Dependency structure matrix genetic algorithm 
(DSMGA) is another approach which models the relation-
ship among variables using dependency structure matrix 
(DSM) (Strehl and Ghosh, 2002). In DSMGA a clustering 
method is used for identifying the linkage groups. In spite 
of these efforts, none of the algorithms have been  
claimed to be stronger than that HBOA which itself in spite of 
it's polynomially scale in terms of number of fitness 
evaluations, is computationally expensive.  

In this paper a new linkage learning approach, which is 
called "Local Optimum based Linkage Learner" (LOLL), is 

 
 
 
 

 

proposed. The proposed algorithm as its title implies, 
does not fall in the above mentioned categories, but it is a 
linkage group identification approach which tries to 
identify multivariate dependencies of complex problems 
in acceptable amount of time and with admissible 
computational complexity.  

In this section, deterministic hill climbers (DHC) which 
will be used later in our algorithm and challenging 
problems which are used to explain and test the 
proposed algorithm are described. Firstly, some terms 
should be defined. A partial solution denotes specific bits 
on a subset of string positions. For example, if we 
consider 100-bit binary strings, a 1 in the second position 
and a 0 in the seventh position is a partial solution. A 
building block is a partial solution which is contained in an 
optimum and is superior to its competitors. Each 
additively separable problem is composed of number of 
partitions each of which is called a "linkage group". 
 

 

Deterministic hill climber 

 

In this study, deterministic hill climbers (DHC) are used 
for searching for local optimums. In each step, the 
deterministic hill climber flips the bit in the string that will 
produce the maximum improvement in fitness value. This 
process can be allowed to iterate until no single bit flip 
produces additional movement. Deterministic hill climber 
starts with a random string. 
 

 
MATERIALS AND METHODS 
 
Challenging problems 

 
Deficiencies of genetic algorithms were first demonstrated with simple 

fitness functions called deceptive functions of order k. Deception 

functions of order k are defined as a sum of more elementary deceptive 

functions of k variables. In a deceptive function the global optimum (1, 

1) is isolated, whereas the neighbours of the second best fitness 

solution (0, 0) have large fitness values. Because of this special shape 

of the landscape, genetic algorithms are deceived by the fitness 

distribution and most GAs converge to (0, 0). This class of functions is 

of great theoretical and practical importance. Below the reader will find 

an additively separable function, Trap 5, where u is the number of ones 

in the input block of 5 bits. An n-bit Trap 5 function has one global 

optimum in the string where the value of all the bits is 1, and it has 

(2n/5) - 1 local optimums. The local optimums are those individuals that 

the values of the variables in a linkage group are either 1 or 0 (they are 

all 1, or they are all 0). 
 

   5 if (u   5) 
 

trap 5 (u )   
4 − u 

 
 

   otherwise 
 

  
n / 5 (1) 

 

   
 f

 trap 5 
(

 

X
 

)
  

∑ trap 
5 ( X ( i −1) *5  1:( i − 1) *5  5 )

 
 

  i 1  
 

 
Also another additively separable function called Deceptive 3 defined as 
below where u is the number of ones in the input block of 3 bits. An n-bit 
Deceptive 3 function like an n-bit Trap 3 function has one global 
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optimum in the string where the value of all the bits is 1, and it has undiscovered linkage groups of the  problem  are  identified.  The 
 

(2n/3) - 1 local optimums.              process will end if all the variables of the problem are assigned to a 
 

                 linkage group. In the search phase, K deterministic hill climbers are 
 

   1  if (u  3)         initialized randomly and set to search the landscape (with length (Xs) 
 

deceptive 3 (u )                number of variables). When each DHC finds a peak in the landscape 
 

  1 − u * 0.1 otherwise      (2) and no movements are possible, that solution which is a local optimum 
 

 n / 3               will be saved in a set named "HighModals".   
 

f
deceptive3   

(
 
X

 
)
 


 
∑

 
deceptive

 3 
(
 
X

 ( i −1)*3 1:( i −1) *3  3 
)
       After  the  search  phase,  analysis phase starts.  In  the  analysis 

 

 i 1               

phase, linkage groups should be identified by comparing different local  

                 
 

Where u is the number of ones in the input block of 3 bits. For yet 
optimum solutions.        

 

A  comparison  method  is  needed  for  the  analysis  phase.  The  
another  more  challenging problem  here we  present an  additively  

comparison method should be able to segregate the BBs of the local  

separable function, one bit Overlapping-Trap 5, where u is the number  

solutions and yet it should be simple  and  uncomplicated.  XOR  
of  ones  in  the input  block of  5 bits.  An  n-bit Overlapping-Trap  5  

operation is a good candidate for this purpose. This is due to the fact  

function has one global optimum in the string where the value of all the  

that the local and global solutions of a decomposable function are the  

bits is 1 just similar to Trap 5 function, and it has (2(n-1)/4) - 1 local  

two strings with the most differences in their appearance and binary  

optimums. The local optimums are those individuals that the values of  

strings are used to code the individuals.   
 

the variables in a linkage group are either 1 or 0 (they are all 1, or they   
 

Therefore in the analysis phase, each two local optimum solutions  
are all 0) again similar to Trap 5 function.          

 

         in the "HighModals" set are XORed with each other and the results  

                 
 

   
 

            are stored in "XORed" set. Therefore "XORed" is an array of arrays. 
 

   5 if (u  5)       The strings with least number of ones are found. Number of 1s (r) in 
 

overlapping _ trap5 (u )   
otherwise 

     

(3) 
these strings  is  considered  the length of  linkage group.  And these 

 

   4 − u      strings (string with length r) are put in the set "DiscoveredBBs" which  

                 
 

   n / 4              is an array of arrays and contains the ultimate results (all the identified  

f
 overlapping  _ trap5   

(
 
X
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overlapping
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trap
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X

 (i −1)*4 1:( i −1)*4  5 
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  linkage groups). All of the other members of "XORed" set with more  

   i 1              
 

                 than r 1s are put in the set "XsArray" which is again array of arrays. 
 

where u is the number of ones in the input block of 5 bits.     After  identifying  some  of  the  linkage  groups,  the  algorithm  is 
 

                 recursively called for finding linkage groups in other parts of the string 
 

                 which are not identified yet. The undiscovered parts are the XORed 
 

Local optimum based linkage learner (LOLL)       strings  which  have  length  more  than  r  or  those  variables  of  the 
 

                 problem which are not in the "XORed" set. Therefore those bits in the 
 

The main idea in the proposed approach for identifying the multivariate Xs which are not in the"XORed" set are added as a separate member 
 

to the "XsArray" (step A.4 in the algorithm). 
  

 

dependencies  is  using  local  optimums.  But how  can the local   
 

As  was  mentioned before we need a mechanism  to balance the 
 

optimums lead us to identification of the linkage groups?     
 

    

time spent in the search phase. For this reason a parameter, sp is 
 

Local optimums of "additively separable problems" have some unique  

contrived which determines when to leave the search phase. Leaving 
 

features. As  it is obvious, the global optimum  of an additively  

the search phase takes place with the probability sp. If sp is small, the 
 

separable problem is  the one  that all of its building blocks are  

set HighModals will become bigger because the search phase takes 
 

identified. In another words, in the global optimum, all of the linkage  

longer and as such more local solutions are found. Analysis of huge 
 

groups of the problem have the highest possible contribution to the  

number of solutions is difficult and unnecessary. On the other hand by 
 

overall fitness. But in local optimum solutions, not all of the building  

comparison  of  too  few  local  solutions  there  is  a  little  chance  of 
 

blocks are found and those partitions or sub-problems of the problem  

identifying  all  the  linkage  groups  of  the problem.  So sp  parameter 
 

whose  optimum values  are not found  are  occupied  by  the best  

 

should be determined wisely considering the length of the problem. If 
 

competitors of the superior partial solution.         
 

        

the  length  of  the  problem  is  more,  the  number  of  local  solutions 
 

In  additively  separable  problems there are lots  of these local  

needed to identify the linkage groups is more. If each variable of the 
 

optimum solutions.  Actually, number of such solutions is  directly  

problem is assigned to at least one linkage group, the LOLL algorithm 
 

dependant on length of the problem and number of partitions (or sub-  

terminates. The pseudo code of LOLL algorithm is shown in Algorithm 
 

problems or linkage groups) of the problem. It can be said that each  

1. 
         

 

local solution contains at least one building block (except the one with          
 

Xs is an array with length n containing the indexes of the problem 
 

all 0s) and therefore comparison of the optimum solutions can lead us  

variables. DiscoveredBBs  is an array  of arrays,  containing  the 
 

to identification of the linkage groups.           
 

          

discovered linkage groups. Each linkage group is shown with an array 
 

The  following example can  reveal this concept more clearly.  

containing  the  indexes   of  the  variables  in  the  linkage  group. 
 

Consider a  12 bit Trap  3 function.  This function  has one global  

HighModals is an array containing the local optimums of the problem. 
 

optimum  11111111111 and (212/3) - 1 = (15) local optimums. The  

XORed is an array of arrays containing the result of XOR operation on 
 

strings  are  local  optimum if the bits corresponding to  each trap  

local solutions. Each XOR result is shown with an array containing the 
 

partition are equal, but  the value of  all the bits in at least one trap  

indexes   of   bits   with   values 1 after doing   XOR operation. 
 

partition is 0. Some of local optimums are shown in Table 1. A simple  

DeterminedBits is an array which contains the indexes of the variables 
 

comparison between first local solution and fifth local solution helps us  

which their  corresponding linkage group is identified. XsArray is an 
 

find  the  second linkage  group  and  comparison  between  third  local  

array of arrays containing those parts which should be searched again 
 

solution and fourth local solution helps us find the first linkage group.  

for identification of the remaining linkage groups. 
 

 

Now, the algorithm can be explained and the example is continued  
 

As it is obvious, the only parameter which should be set wisely is 
 

later. In an overall view, there are two phases of search and analysis.  

sp. In the future work, we address solutions to adjust this parameter 
 

In search phase some local optimums are found and in analysis phase  

automatically.  Complexity  of  the  algorithm  will  be  discussed  later. 
 

the comparisons between these local solutions are done. If number of  

Now, we go back to our simple example: 
  

 

local solutions is not enough to discover all the linkage groups of the   
 

          
 

problem, the local solutions for the remained bits of the problem not 
Xs is here the array Xs = {1, 2, …, 12} HighModals set is in Table 1. 

 

assigned to a linkage group yet are to be found by the comparison of  

XORed set of our simple example:  [1,2,3,4,5,6] , [1,2,3,7,8,9], 
 

the newly found local optimums. This process repeats until remained  
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Table 1. Some of the local optimums for Trap 3 size 12.  

 
1 1 1 0 0 0 0 0 0 1 1 1 

0 0 0 1 1 1 1 1 1 0 0 0 

0 0 0 1 1 1 0 0 0 1 1 1 

1 1 1 1 1 1 0 0 0 0 0 0 

1 1 1 1 1 1 0 0 0 1 1 1 
 
 

 
[7,8,9,10,11,12] , [4,5,6] , [1,2,3,7,8,9,10,11,12] , [1,2,3] 
 
DiscoveredBBs set so far: [4, 5, and 6], [1, 2, and 3] 
 
DeterminedBits set: [1, 2, 3, 4, 5, and 6] 
 
XsArray: [1,2,3,7,8,9] , [7,8,9,10,11,12] , [1,2,3,7,8,9,10,11,12] 

 
LOLL algorithm is again called for three sub-problems in XsArray. The 

algorithm could be simplified but it is developed in a general form so 

that it can also identify the overlapping linkage groups. The 

experimental results regarding overlapping linkage groups and 

complexity analysis of them are kept to be reported in our future work.  
If we have two or more optimums in each building block, the 

method has some drawbacks in finding the final DiscoveredBBs. 
For handling this drawback we use each of these DiscoveredBBs 
as one cluster. Then as cluster ensemble problem is solved by 
cutting a minimal number of clusters (hyperedges) using the 
hypergraph-partitioning algorithm (HGPA) (Strehl and Ghosh 2002). 
 
 
Complexity analysis of the LOLL algorithm 

 
To analyse the complexity of LOLL algorithm, computational cost of 
each step of the algorithm is calculated. In the first phase there are 
two main tasks that should be analyzed. The first one is finding the 
local solutions, which is done in S.1 step in the LOLL algorithm 
(Figure 1). The second task is deciding to continue the search or 
leave the search phase (step S.3).  

The local optimum solutions are found by deterministic hill climbers. 

Each DHC starts from random point in the landscape. In each step, it 

flips the bit which its flip will cause maximum improvement in the fitness 

of the string. So maximum number of flips for finding the right bit to flip, 

to get the maximum improvement is equal to length of the string (which 

in the first pass is equal to n). The maximum number of steps that take 

for each DHC to find a local optimum in the worst case is less than 

number of bits of the string (Again in the first pass is equal to n). 

Therefore in the worst case it takes n2 tasks for each DHC to reach to a 

local optimum in the first pass of the algorithm. So the complexity of the 

hill climber is O (n2).  
Expected number of repetition of step S.3 is equal to value of 

parameter sp. As it is stated before the value of sp is directly related to 

number of variables of the problem (for example sp = 1/5 * number of 

bits). Therefore number of repeats of the S.3 loop in the first pass of 

executing the algorithm is equal to length of the problem n and the 

search phase complexity is of order n3. Number of XOR operations 

tasks in the first pass of the algorithm is equal to (number of 

HighModals). Expected number of high modals (local solutions found in 

search phase) is proportional to the length of the problem n, so, it can 

be said that complexity of this step is equal to n3.  
So, in the worst case, which is determination of one linkage group in 

each pass, number of calls to LOLL algorithm is equal to n(n/k) 

(Equation 1) but worst case never happens. Simply, the worst case is 

determination of all the local optimums of the problem in one pass which 

will be of order 2 (n/k) because knowing all the local optimums, 

 
 

 
all the linkage groups can be discovered in the first pass. We will 
present the amortized complexity in our future work.  

For non-overlapping linkage groups, the algorithm can be 
simplified and its complexity (worst case) in simplified form would 
be of order (n3). 
 
T(n) = (n - 1)T(n - k) + n3  
= (n - 1)((n - k - 1)T(n - 2k) + (n - k)3) + n3  
= (n - 1)((n - k - 1)(n - 2k - 1)T(n - 3k) + (n - 2k)3+ 
(n - k)3 + n3  
…  
= (n - 1)(n - k - 1)(n - 2k - 1)…(n – n/k*k) + n3  
+ (n - k)3 + (n - 2k)3 + … + (n – 
n/k*k)3 ≈Σn3 + n4 + n5 + … + n(i+3)(i 
=n/k) →O(ni) 

 
Complexity analysis by number of fitness evaluations 
 
In different calls of the function LOLL, DHC is executed on different 
length strings. In the first call of the LOLL, the length of the string is 
the maximum size which is n. In the following calls of the LOLL the 
string length decreases at least by k bits.  

In the following paragraphs, number of fitness evaluations done by 

DHC in the first call of the LOLL function is calculated. Fitness 

evaluations are only done in search phase which is finding the local 

optimums by a DHC. DHC starts from random point in the landscape. In 

each step, it flips the bit which its flip will cause maximum improvement 

in the fitness of the string. So number of flips for finding the right bit to 

flip, to get the maximum improvement is equal to length of the string 

(which in the first pass is equal to n). The maximum number of steps 

that take for each DHC to find a local optimum is different in different 

cases. Three different cases are explained here. 

 

First case (worst case) 
 
In this case the maximum number of flips should be done to reach to a 
local optimum. In trap functions based on their fitness function, it 

happens when the sub-traps tend to reach to the local optimum of all 0s 

while it has the possible maximum number of 1s which is k - 2 (If a trap 

has k - 1 or k ones it tends to reach to the global optimum of all 1s). 

Therefore in this case, having n/k sub-traps in the problem, each sub-

trap should go under (k - 1) flips and therefore (k - 2)*n/k = n - 2
n
/k flips 

is necessary to reach to the local optimum of all 0s. 

 

Second case 
 
This case happens when only one flip is needed to reach to a local 
optimum. It happens when the sub-traps tend to reach to the global 
optimum of all 1s and have (k - 1) 1s already, or when they tend to 
reach to the local optimum all 0s and they have (k - 1) 0s already. In 
this case each sub-trap needs only one flip to reach to the local or 
global optimum and the total flips for the whole problem to reach to 
a global or local optimum is n/k. 
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Figure 1. Local optimum based linkage learning algotithm. 
 

 

Third case (best case) 

 
In this case, the random start point of the DHC is it-self a local 
optimum, so no flip is need. As it was stated in the above 
paragraph, DHC in each step evaluate the fitness of each candidate 
solution exactly n times to decide which bit is to flip.  

So in the above three cases, number of fitness evaluations are 

respectively n * (n - 2n)/k, n
2
/k and n. The above three explained  

cases have different probabilities of occurrence. In the first case the 

probability of event is equal to (C (k, k - 2)/2
k
)
n/k

 = ((k2 - k)/
2k+1

)
n/k

. The 
probability of second case is (2*C (k, k - 1)2

k
)
n/k

 = (2k/2
k
)
n/k

, probability 

of the third case is 2
n/k

/2
n
. But how many local optimums are needed  

to find all the linkage groups? The best case which fortunately is the 
most probable one, happens when the local optimum with all 0s (the 
most probable one) and the local optimums which all of their sub-traps 
are all 0s but one of the sub-traps is all 1s (the second most probable 
optimum), are found in the first call of the LOLL. In this case n/(k + 1) 
strings are needed to be found by DHC. Number of fitness evaluations 

is at most (n/k*(n
2
 - 2n

2
/k - kn + 3n)) + (n - 2n/k). This case is the most 

probable one, because the local optimums seen in this case are the 
ones with the most probability of happening among all the other  
possible events. The probability of the local optimum of all 0s is ((2

k
 – 

k)/2
k
)
n/k

 and the probability of the local optimums with all but one the 

 
 

 

sub-traps of 0s and the other one of all 1s is (k/2
k
)((2

k
 – k)/2

k
)
n/k-1

. So 

in overall, number of fitness evaluations (at most) is of order O (n
3
). 

 

 

RESULTS 

 

For all tested problems, 30 independent runs are 
performed and our approach is required to find all the 
linkage groups accurately in all the 30 runs. The 
performance of LOLL is measured by the average 
number of fitness evaluations until it terminates. The 
results are summarized in the Figures 2 to 4. All these 
results are obtained without applying the HMETIS. As it is 
claimed, the finding of building blocks is subquadratic 
either in non-overlapping challenging problems, or in 
overlapping ones. It is worthy to note that the time order 
of the algorithm in the challenging problems increases as 
the size of building blocks increases no matter it is over-
lapping functions. This is very important result, because 
as the size of building blocks in the bayesian optimization 
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Figure 2. Number of fitness evaluations against problem size for trap5 and trap10.  
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Figure 3. Number of fitness evaluations against problem size for deceptive 3 and deceptive 7 
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Figure 4. Number of fitness evaluations against problem size one-bit overlap trap5 and trap10 
 
 
 
algorithms (BOA) and in the hierarchical bayesian 
optimization algorithms (HBOA), the times orders of these 
algorithms increase exponentially (Strehl and Ghosh, 
2002). 
 

 

Conclusion 

 

With the purpose of learning the linkages in the complex 
problem a novel approach is proposed. There are other 
approaches that are claimed to be able to solve those 
challenging problems in tractable polynomial time. But the 
proposed approach does not classified into the existence 
categories. This work has looked at the problem from 
whole different points of view. Our method is based on 
some properties of additively decomposable problems in 
order to identify the linkage groups. The amazing 
property of additively decomposable problems that our 
method is based on is the special form of their local 
optimums which a bunch of them would give us lots of 
information about the linkage groups. The proposed 
algorithm is called local optimum based linkage learner 
(LOLL). The algorithm is capable of solving the 
challenging problems effectively.  

LOLL is capable of identifying the linkage groups in a 
simple and straightforward manner. As it is shown in  
terms of numbers of fitness evaluation the complexity of 
LOLL has been O (n

1.2
) in the two test cases over a trap 

problem and O (n
1.7

) and O (n
1.1

) in deceptive 3 and 

 
 

 

deceptive 7 problems. Moreover we believe that the 
proposed algorithm (without any major changes) is 
capable of finding the overlapping building blocks. The 
result testing the proposed approach on overlapping 
problems and more detailed analysis of the algorithm will 
be represented in our future work. Analyzing the pro-
posed algorithm in the context of optimization problem 
and along with an optimization search is one of the tasks 
that can be done as future works. Comparing the results 
with the other approaches is also left as future work. 
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