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Two transgenic potato lines csr2-1 and csr4-8, containing two different antisense constructs, csr2 and csr4, 
respectively, were crossed to investigate the possibility of achieving double transformants with combined 
effects of the two antisense transgenes on plant phenotypes and cellulose deposition. Molecular analysis 
revealed an expected segregation ratio of 1:1:1:1 of the four classes. Phenotype characterization revealed that 
offspring containing either one or both transgenes produced more tubers than the control plants but individual 
tubers were mostly smaller and had lesser weight than the control tubers. 
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INTRODUCTION 

 
Antisense technology has increasingly huge potentials in 
cellular and tissue engineering, in addition to its wide-spread 
use in studying gene function as well as control-ing the 
expression of unwanted proteins. The basic con-cept of 
antisense technology hinges on halting the expression of a 
specific mRNA by the use of a comple-mentary sequence, 
which blocks the transfer of genetic information from DNA to 
protein (Jarald et al., 2004).  

There are three ways of producing this specific inhibit-tion of 
gene expression. These include the use of single-stranded 
oligonucleotides that bind to a specific mRNA, forming a DNA-
RNA duplex, which in turn inhibits tran-slation into the 
corresponding protein. The second credi-ble antisense strategy 
is to endogenously express an antisense RNA through a 
recombinant expression vector harbouring antisense genes. 
This antisense RNA is be-lieved to form a duplex with the 
complementary mRNA sequence and blocks translation by the 
ribosome. In the third strategy, which is RNA interference 
(Hammond et al., 2000), long double-stranded RNA (dsRNA) 
molecules are cleaved by a dsRNA-specific nuclease named 
Dicer (Bernstein et al., 2001) into 21–23 base pairs small inter-
fering RNAs (siRNAs) (Elbashir et al., 2001). The siRNAs  
 
 

 
*Corresponding author. E-mail: 
obembe@covenantuniversity.com. Tel: 234-8060164341. 

 
 
 

 
are then incorporated into a multi-protein nuclease com-plex, 
known as the RNA induced silencing complex (RISC). The 
complex is then guided to the target mRNA through 
conventional base- paring interaction of the anti-sense strand of 
the siRNA and eventually degrades the target mRNAs 
homologous to the single stranded siRNA (Hammond et al., 
2000).  

(Oomen et al., 2004) employed the antisense RNA 
expression vector strategy to generate antisense potato plants 
with varying degrees of down-regulation of cellu-lose content in 
tuber cell walls. The transgenic potato tuber clones were 
obtained by transforming the potato plant with antisense 
constructs of the class-specific re-gions (CSR) of four 
corresponding potato cellulose synthase genes (CSR1, 2, 3 and 
4). Two transgenic lines csr2-1 and csr4-8, which showed 
considerable cellulose reduction (40 and 60%, respect-ively) in 
their tuber cell walls were identified by the anthrone colorimetric 
assay (Oomen et al., 2004). Hence our interest in exploring the 
possibility of achieving double transformants with com-bined 
effects of the two transgenes on organ and/or cel-lular 
phenotype, and ultimately on cellulose synthesis and 
deposition.  

In this study, we have crossed the transgenic potato 
lines csr2-1 and csr4- 8, whose tuber cell walls exhibit 

low levels of cellulose as compared to the control. We 
report the segregation analysis of the transgenes as well 
as whole plant phenotype characterization, which indicate 
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gaaccatgca tctcaatctt aatactaaaa tgcaacttaa tataggctaa accaagtaaa 

gtaatgtatt caacctttag aattgtgcat tcataattag atcttgtttg tcgtaaaaaa 

ttagaaaata tatttacagt aatttggcat acaaagctaa gggggaagta actactaata 

ttctagtgga gggaccagta ccagtaccag tacctagata ttatttttta ttactataat 

aataatttaa ttaacacgag actgatagga atgtcaagtg gtagcggtag gagggagttg 

gtttagtttt ttagatacta ggagacagaa ccggacgggc ccattgcaag gcccaagttg 

aagtccagcc gtgaatcaac aaagagaggg cccataatac tgtcgatgag catttcccta 

taatacagtg tccacagttg ccttccgcta agggatagcc acccgctatt ctcttgacac 

gtgtcactga aacctgctac aaataaggca ggcacctcct cattctcaca ctcaacactc 

aacgagtggt aacttttact catctcctcc aattatttct gatttcatgc atgtttacat 

tctattatgt attatgaatc atagtttcgt gtataaacgt tgtttcatat ctcatctcat 

ctattctgat tttgattctc ttgcctactg aatttgaccc tactgtaatc ggtgataaat 

gtgaatgctt cttcttctca gaaatcaatt tctgttttgt ttttgttcat ctgtagctta 

ttctctggta gattcccctt tttgtagacc acacatcac 
 

Figure 1. The 819 base pairs promoter sequence. 
 

 

combined effects of the two transgenes on tuber produc-

tion in the progeny. 

 
MATERIALS AND METHODS 
 
Plant material and growth conditions 
 
Potato (Solanum tuberosum) plants used for the cross carried, in 
antisense orientation, csr2 sequence of the potato CesA2 gene 
(accession number AY221089) or the csr4 sequence of the CesA4 
gene (accession number AY221088) (Oomen et al., 2004)). 
Expression of the antisense constructs was targeted to the tuber by 
using a granule bound starch synthase (gbss) promoter to drive its 
expression. The 819 base pairs promoter sequence is presented in 
Figure 1. 

Pollen of the plant line csr4-8 was used to fertilize plant line csr2- 
1 to produce berries. A total of 488 seeds were removed from the 

berries, dried and prepared for germination. 100 seedlings, repre-
senting the different genotypes, were grown in soil in the green-
house under 3,000 lux and in a light/dark period of 16/8 h. 

 

Molecular analysis 
 
Copy number of transgene integration of the parents and 
segregation pattern in the offspring was determined by southern 
analysis. A total of 84 F1 plants were used for segregation analysis. 
Genomic DNA was isolated from young leaves by using GenElute™ 
Plant Genomic DNA Miniprep Kit (Sigma) . 8 µg of the prepared 
DNA was digested with restriction enzyme HindIII and electropho-
resed on 0.8% (w/v) agarose gels. Electrophoresed DNA samples 
were transferred onto Nylon N-membrane (Amersham). Hybri-
dization was performed at 65°C with modified Church buffer 
(Church and Gilbert, 1984) containing [32P]UTP-labelled NptII 
probe. 

 

Phenotype characterization 
 
Following molecular characterization of the 84 plants and at matu-
rity, the tubers were harvested and grouped accordingly. The tubers 
for each F1 plant were then weighed to generate data on number of 
tubers from a particular offspring plant that correspond to norma-
lized 100 g weight. 

 
 

 

RESULTS AND DISCUSSION 
 
Southern analysis of the parent plants (Figure 2) revealed 
that parent csr2-1 contained 2 copies of the transgene in 
tandem while parent csr4-8 contained 3 copies (1 single 
insertion and 1 tandem repeat) . Based on the transgene 
insertion number in the parent, we determined the segre-
gation pattern of the offspring, using Southern analysis. 

This analysis revealed an expected co-segregation of 
both the single copy and the tandem repeat of csr4 
transgenes, which implies that they were integrated in the 
same locus, thus leading to an expected segregation ratio 

of 1:1:1:1 of the four classes ( 
2
3 = 3.3; P<<0.05). The 

observed segregation pattern of a total of 84 plants 
analyzed was: twenty five plants contained the csr4 
construct, twenty four the csr2 construct, fifteen both the 
csr2 and csr4 construct, and 18 plants contained none of 
the constructs. Although, the number of plants containing 
the double constructs or no construct was lower than that 
of plants containing either of the two transgenes, statis-
tically it is well within the expected segregation ratio.  

There were differences in tuber production whereas 
there was no visible difference in plant morphology, phyl-
lotaxis, growth and development of the offspring. It was 
observed that 100% and 90% of the control and csr4 
plants produced tubers respectively, whereas for the csr2 
and csr2/csr4 plants, only 70% of them produced tubers. 
It was clear that offspring plants containing either one or 
both antisense transgenes produced more tubers than 
the control plants, but individual tubers were mostly 
smaller and had lesser weight than the control tubers. By 
deduction from Figure 2, 88% of the csr2 plants and 64% 
of the csr2/csr4 plants produced tubers with an average 
weight of equal or less than 5 g, whereas 50% of the csr4 
plants and 6% of the control plants produced tubers with 
an average weight of equal or less than 5 g.  

On the whole, our results present molecular evidence 

of Mendelian inheritance of the two antisense transgenes 
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Figure 2. Southern blots showing transgene integration in the parents and the observed 

segregation pattern in the offspring. Double insertions of the csr2 construct in the csr2-1 parent 

and triple insertions of the csr4 construct in the csr4-8 parent.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Number of tubers of offspring plants corresponding to normalized 100 g weight. Average weight of tuber for a particular 

F1 plant is deduced by dividing the normalized 100 g weight by the corresponding number of tubers. 
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genes in the progeny. These plants did not exhibit striking 

additive effects of the transgenes in the whole plant mor-
phology. We are currently analyzing the tubers further for 

cellular phenotypes since the antisense genes were 
targeted to the potato tuber. 
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