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Recently, high-tech industries such as semiconductor, aerospace, optoelectronics, precision 
manufacturing precision required for its products increasingly stringent and dust-free rooms operating 
environment of various pollutants control requirements are also increasing. Accuracy ventilation in 
dust-free room is related to the experimental results, proper ventilation can help reduce levels of 
pollution particles inside the laboratory. In addition to particle pollution exclusion, the pollution particles 
into the switch through the door, whether we can be inhibited by different ventilation position pollution 
particles into the lab, then laboratory ventilation should be a priority. Laboratory common sources of 
pollution, tiny particles such as micro-electromechanical laboratory processes generated by the air 
conditioning ventilation equipment into dust, biological experiments may leak off bacteria, these 
contaminated dust particles and bacteria accumulate even off the air in the operating environment, 
some will direct the human body after inhalation injury, and can cause damage and affect the accuracy 
of the experimental laboratory equipment. 
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INTRODUCTION 
 
Recently, product accuracy in high-tech industries, such 
as semiconductors, aerospace, optoelectronics, and 
precision manufacturing, is increasingly stringent, as well 
as control of various pollutants in operating environments. 
In this situation, dust-free rooms emerge. Although the 
general laboratory ventilation requirements are not higher  
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than those in dust-free rooms, the design analysis 
techniques are the same. Ventilation in laboratories may 
affect the accuracy of experimental results, and proper 
ventilation can help reduce the content of polluted 
particles in labs. Besides discharge of polluted particles, 
the entry of polluted particles into labs can be prevented 
through different ventilation positions when lab doors are 
opened or closed, thus, ventilation in laboratories is very 
important. Pollution sources in laboratory rooms include 
particulates from MEMS lab processes, dust caused by 
air conditioning ventilation, and bacteria from biology 
experiments. Such polluted particles, dust, and bacteria
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may accumulate in the air of an operating environment, 
some of which may harm the human body after 
inhalation, cause damage to experiment equipment, and 
affect experiment accuracy.  

The studies related to pollution discharged through 
ventilation include: the vertical inlet air system, as 
discussed by Qian et al. (2008) in which different air inlet 
and outlet positions are designed to discharge polluted 
particles exhaled by patients in the double sickbeds; 
Zhao et al. (2007) discussed factors affecting the 
diffusion of polluted particles in indoor environments, and 
simulated the discharge of polluted particles in personal 
ventilation rooms (Zhao et al., 2007; Memarzadeh et al., 
2000) discussed the discharge of polluted particles at 
different ventilation rates in hospital isolation wards; Chiu 
(2004) discussed the impact of instantaneous loss of 
pressure on room airflow when personnel enter or leave a 
single negative pressure isolation ward when ward doors 
are opened; Yongson et al. (2007) analyzed airflow in air 
conditioned spaces; Xu et al. (2008) discussed the impact 
of different pollution sources; Chow et al. (2008) 
discussed surgical rooms; Gao et al. (2007) discussed 
the accumulation of polluted particles in rooms, in 
addition to diffusion of polluted particles; Zhang et al. 
(2006) also used a vertical inlet air system when 
discussing diffusion of polluted particles.  

Workers and students spend about half their working 
hours at work or school. Therefore, maintaining adequate 
indoor air quality (IAQ) in schools and the workplace is 
becoming a top priority for facility managers and building 
operating engineers. An essential element for maintaining 
adequate indoor air quality is outside air to dilute indoor 
air pollutants and exhaust these contaminants along with 
moisture and odors from our buildings. Carbon dioxide is 

a natural component of air. The amount of CO2 in a given 

air sample is commonly expressed as parts per million 

(ppm). The concentrations of CO2 found in most schools 

and offices are well below the 5,000 ppm occupational 
safety standard (time weighted average for an eight-hour 
workday within a 40 h work week) for an industrial 
workplace. The most widely accepted standard is the 
American Society of Heating, Refrigeration, and Air 
Conditioning Engineers (ASHRAE) Standard 62. Some 
state and local codes have adopted the ASHRAE 
Standard 62 ventilation requirements. Tartakovsky et al. 
(2013) presented results of particle mass, number and 
size measurements inside passenger cars (PCs), vans 
and urban buses. Effects of the in-cabin air purifier on 
particle concentrations and average size inside a vehicle 
are studied. Use of the air purifier leads to a dramatic 
reduction, by 95 to 99%, in the measured ultrafine 
particles number concentration inside a vehicle compared 
with outside readings. The lowest values of particle 
concentrations inside a PC without air purifier were 
registered under the recirculation ventilation mode, but 

the issue of CO2 accumulation limits the use of this mode 

to very short driving events. 

 
 
 

 
Generally, in most studies of polluted particles in a 

negative pressure space, gas concentration is used to 
substitute the concentration of actual particles. Although 
most findings differ little from the actual results, polluted 
particles of different materials or sizes cannot be 
simulated. The above two parameters can affect 
simulation results.  

This study conducted the Taguchi experiment to 
analyze system parameters, impact, and system 
performance, determines the optimal parameters of 
discharge outlet, and establishes a laboratory pollution 
discharge prediction system, as based on the neural 
network, in order to improve the predictive and control 
abilities of lab cleanliness. Through optimized 
engineering analysis, this study aims to determine the 
optimal position of discharge outlets affecting pollutions, 
thus, improving process quality and reducing production 
time through discharge system control factors and 
parameter levels, and establishing a pollution prediction 
and control system. 
 
 
LITERATURE REVIEW 
 
Taguchi experiment method 
 
The Taguchi experiment method is to seek process 
parameter level combinations and ensure that product 
quality has minimum variations in proximity of the 
expected target value. In previous literature, the Taguchi 
experiment method was widely applied in product design 
and process improvement, and achieved good effect 
(Tong et al., 1997). Parameter design is the major step of 
the Taguchi experiment method, and is aimed at 
determining process parameters and improving process 
quality. Taguchi has proposed various performance 
measures known as Signal-to Noise (S/N) ratios for 
evaluating the performance of engineering systems. The 
greater the S/N ratio, the better the quality process. And 
the greater the S/N ratio, the smaller the process loss. In 
communications, S/N ratio denotes communication 
efficiency, S denotes signal, and N denotes noise. The 
higher the S/N ratio, the better the communication 
efficiency. During communication, output and power of 
receivers can be decomposed into signal power and 
noise power, which ratio can be used as the criterion for 
evaluating the transfer efficiency of a communication 
system. The S/N ratio of quality characteristics is defined, 
as follows: 
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The Dr. Yasuto Taguchi used La(b

c
) to denote the 

orthogonal array, where L represents the orthogonal 
array, as it is evolved from Latin Square, „a‟ is the 
frequency of the experiment (orthogonal array), „b‟ is the 
level of various factors, and „c‟ is the column number of 
the orthogonal array. Only in this manner can the optimal 
parameter combination be obtained. Thus, Dr. Yasuto 
Taguchi used the “orthogonal array" and S/N ratio to 
determine optimal factor combinations (Sue, 2002). 
However, the Taguchi method has some disadvantages. 
While the Taguchi method can determine one group of 
better parameters from the original set parameters, most 
known parameters are based on information from 
manufacturers or engineers. The parameters set by the 
Taguchi method are discrete values, and cannot 
effectively determine the optimal parameters of 
continuous variables (Tong and Su, 1997). 
 
 
Neural network 
 
In recent years, the neural network has been widely used 
to solve data modeling in commerce, research, and 
engineering environments. These problems can be 
divided into four types: forecasting, classification, 
functional approximation, and data mining. It has more 
significant effect on machine learning, classification, and 
process prediction models (Wong et al., 1997). The 
neural network model depends on supervised learning 
networks, unsupervised learning networks, associate 
learning networks, and optimization application networks 
(Ye, 2001). In the past, multi-classification problems were 
solved by a back-propagation network (BPNN), RBFNN, 
and LVQ (Ibrahim et al., 2004; Kohonen et al., 1986). The 
back-propagation network architecture is a multilayer 
perceptron (MLP), and the learning algorithm often uses 
error back propagation for classification, diagnosis, 
function estimate, and prediction, and the effect is 
significant (Dutta and Shekhar, 1988; Sekeroglu, 2004). 
In addition, Radial Basis Function Neural Networks 
(RBFNN) has better mapping ability, and comprises the 
same architecture as the MLP. As it is a basic feed-
forward neural network combination, it can reduce 
learning time. 
 
 
Control chart 
 
The control chart was developed by Dr. Shewhart in Bell 
Telephone Laboratories (BTL) in 1924 with the aim of 
monitoring process changes. Although the control chart 
was originally designed for the manufacturing 
environment, when a suitable quality measurement 
system is established, it can be used for different industry 
quality management. The control chart has multiple uses 
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in process improvement cycles, including: (1) the test 
process is used for statistic control; (2) monitor whether 
the controlled work process has any change; (3) seek 
and test work process improvement opportunities.  

The final goal of the statistics process control is to 
reduce the variance of output results by eliminating non-
natural variations. After stabilization of the work, the 
impact of natural variations on the process can be further 
reduced through management, which can perfect output 
results and improve quality. The control chart can help 
infection control personnel to monitor the changes of 
incidences of hospital infection, while the clear and 
visible chart interface facilitates communication with 
clinical staff to promote their recognition and coordination 
with infection control, which can minimize the incidence 
rate of hospital infection.  

The control chart is a tool of graphical representation 
used to monitor the changes of measured values of 
quality characteristics over time. Control chart operation 
is, as follows: at intervals (for example: every 0.5 h), 
management personnel takes one group of samples from 
the process, and draws the sample points on the control 
chart in order to judge whether the process is under a 
controlled state upon calculation of sample statistics. The 
typical control chart consists of one central line (CL) and 
two control lines: for the formation of the upper control 
line (UCL) and lower control line (LCL), the basic 
principle is the same as that of statistical hypothesis 
testing, which is based on the null hypothesis “H0: 
process is at a statistic control state”. When the sample 
points fall within the control bound, the null hypothesis 
cannot be refused. We define the control limits on the 
corresponding Z chart as:  
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The   constants D3 and D4 are   tabulated   for   various 
  

samples of n. The control chart is a tool of graphical 
representation used to monitor the changes of measured 
values of quality characteristics over time. Control chart 
operation is, as follows: at intervals (for example: every 
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0.5 h), management personnel takes one group of 
samples from the process, and draws the sample points 
on the control chart in order to judge whether the process 
is under a controlled state upon calculation of sample 
statistics. When the sample points fall within the control 
bound, the null hypothesis cannot be refused. Generally, 
the pollutant sources in laboratories include the 
particulates of the MEMS lab process, meaning dust 
caused by air conditioning ventilation and bacteria from 
biology experiments. These polluted particles may even 
accumulate dust into the air of the operating environment, 
some of which may harm the human body upon 
inhalation, causing damage to experiment equipment and 
affecting experimental accuracy. This study intends to 
establish one lab pollution discharge prediction system 
with the Taguchi neural network, improve the prediction 
and control abilities of lab cleanness, and predict and 
monitor air quality of return air inlet pollutions. It also 
intends that the application scope of this technology can 
meet the actual needs of the industry. 
 
 
RESEARCH METHODS AND PROCEDURES 
 
Through optimized engineering analysis, this study aims to 
determine the optimal position of discharge outlets affecting 
pollutions, thus, improving process quality and reducing production 
time through discharge system control factors and parameter levels, 
and establishing a pollution prediction and control system. The 
research method and procedures are described, as follows: (1) 
establish a Taguchi experiment assessment model for discharge 
outlets: first, establish lab pollution discharge outlet parameters and 
a quality assessment model, as based on the Taguchi experiment 
method and quality characteristic relationship model; (2) establish a 
pollution prediction and monitoring system. 

 
Lab physical model 
 
The negative pressure room model consists of the front room and 
the research space. The front room is 4 m long, 5 m wide, and 5 m 
high; the study space is 6 m long, 5 m wide, and 5 m high; the door 
is 1 m wide and 220 m high. In this research, the ventilation volume 
is set to 12ACH (air change per hour), according to the relevant 
specifications of negative pressure isolation wards, and the single 
variable air inlet position is considered. The ISO 14644 clean room 
classification is now the accepted worldwide standard for classifying 
the cleanliness of the air in clean rooms and clean zones. To test 

the performance of a 100 ft
2
 clean zone specified as ISO Class 6. 

The particle concentrations were measured by a Handilaz Mini 
Particle Counter. The air particle counters monitor from 0.1 to 25 
microns. 
 
 
Taguchi experiment and data collection 
 
Through changes of air inlet position and frequency of door 
opening/closing, this study discussed entry of polluted particles into 
wards, as well as the discharge of polluted particles within the 
wards. In this study, the experimental factors are 8 control factors in 
total, and each control factor has three levels. The experimental 
control factors and the levels are as listed in Table 1, and the 

L27(3
13

) orthogonal array is selected for the experiment. Each 
experimental level combination is tested four times. The 

 
 
 

 
experimental observation values of quality features (Smaller the 
Better) of polluted particles are collected, and the S/N ratio of the 
quality features is calculated according to Equation (1), where i = 1, 
2, , 27 is the experiment combination, and j = 1, 2,3,4 are the 
repeated observation values of each experiment combination. 

 
Establishment of lab air quality neural prediction model 
 
At this stage, this study uses BPNN, RBFN, and SVM classification 
as tools that enhance the performance of previous engineering 
prediction and analysis in order to establish a lab air quality neural  
prediction model. First, data set T is divided into training data and 
testing data. Crossover verification can prevent occurrence of over-
fitting and accurately reflect the actual effectiveness of the system.  
(i) RBFNN: RBFNN has a single hidden layer in a structure similar 
to a two-layer perceptron, and each neural between the input layer 
and hidden layer are fully connected. The main concept of RBFN is 
to establish many radial basis functions, and use function 
approximation and curve fitting to determine the mapping 
relationship between input and output, that is, the corresponding  
radial basis function  (  x  c ) , as established in each neural of 
 
the hidden layer. Data set T contains 8 experimental factors and a 
number of experimental combinations n=27, thus, the RBFNN is a 
structure consisting of dimensions (t = 8), n inputs, k neural hidden 
layers, and one output value.  
(ii) SVM regression prediction: Like the neural network, SVM is a 
non-linear prediction tool based on data. The SVM theory, as 
proposed by V. Vapnik, is based on structural risk minimization 
(SRM), which is superior to the traditional Empirical Risk 
Minimization (ERM). This is one of the important objectives of the 
statistical learning theory. SVM is mainly applied to model 
recognition, function approximation, probability density estimation, 
etc. 
 

 N  
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In order to prevent over fitting and improve generalization of the 
prediction model, structural risk, and minimizing its functions, 
should be considered: 
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Where C is the  generalization  parameter,  which  differs  from 
  

Vapnik‟s SVM, and the LS-SVM error term is defined, as follows: 
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Dual  solution  of  the  decision   function   f (x, w)  is  as shown  in 
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Table 1. Experimental observation value of L27(3

13
) orthogonal array. 

 
   Experimental factors    Quality characteristics  

SN 
 

 

Experimental          

Contaminant particles   
 

            
 

combination 
            

 

A B C D E F G H 
y1 y2 y3 y4 SNi yi 

 

         
 

1 1 1 1 1 1 1 1 1 -0.05208 0.341243 0.041564 0.036231 -40.2773 0.09174 
 

2 1 1 1 1 2 2 2 2 0.411286 0.140745 0.02873 -0.07563 -40.3142 0.126283 
 

3 1 1 1 1 3 3 3 3 0.422894 0.070002 0.08247 0.13904 -40.4853 0.178602 
 

4 1 2 2 2 1 1 1 2 -0.45425 -0.47746 -0.28188 -0.40653 -37.8320 -0.40503 
 

5 1 2 2 2 2 2 2 3 0.142604 -0.26078 0.089087 -0.05204 -39.6527 -0.02028 
 

6 1 2 2 2 3 3 3 1 -0.56453 -0.40458 -0.29631 -0.50261 -37.6743 -0.44201 
 

7 1 3 3 3 1 1 1 3 0.303426 0.078534 -0.25761 0.126816 -40.0577 0.062792 
 

8 1 3 3 3 2 2 2 1 0.428214 0.003881 0.08247 -0.00615 -40.2808 0.127104 
 

9 1 3 3 3 3 3 3 2 -0.41677 0.362928 0.037754 0.444637 -40.4424 0.107137 
 

10 2 1 2 3 1 2 3 1 -0.28472 0.079067 -0.0583 0.299452 -39.9064 0.008875 
 

11 2 1 2 3 2 3 1 2 0.092301 0.378214 -0.20227 0.139083 -40.3231 0.101832 
 

12 2 1 2 3 3 1 2 3 0.433293 0.522544 0.229252 0.361 -41.3475 0.386522 
 

13 2 2 3 1 1 2 3 2 -0.5239 -0.4012 -0.38775 -0.5084 -37.5883 -0.45531 
 

14 2 2 3 1 2 3 1 3 -0.24264 -0.20835 -0.1002 -0.46207 -38.6602 -0.25332 
 

15 2 2 3 1 3 1 2 1 -0.31858 -0.0482 0.162679 -0.17085 -39.4508 -0.09374 
 

16 2 3 1 2 1 2 3 3 -0.14784 -0.40298 -0.11163 -0.29158 -38.6623 -0.23851 
 

17 2 3 1 2 2 3 1 1 0.335832 0.024499 0.329713 0.437989 -40.8817 0.282008 
 

18 2 3 1 2 3 1 2 2 0.43547 0.20189 0.612247 0.491603 -41.4617 0.435303 
 

19 3 1 3 2 1 3 2 1 -0.05208 0.341243 0.041564 0.036231 -40.2773 0.09174 
 

20 3 1 3 2 2 1 3 2 0.411286 0.140745 0.02873 -0.07563 -40.3142 0.126283 
 

21 3 1 3 2 3 2 1 3 0.422894 0.070002 0.08247 0.13904 -40.4853 0.178602 
 

22 3 2 1 3 1 3 2 2 -0.45425 -0.47746 -0.28188 -0.40653 -37.8320 -0.40503 
 

23 3 2 1 3 2 1 3 3 0.142604 -0.26078 0.089087 -0.05204 -39.6527 -0.02028 
 

24 3 2 1 3 3 2 1 1 -0.56453 -0.40458 -0.29631 -0.50261 -37.6743 -0.44201 
 

25 3 3 2 1 1 3 2 3 0.303426 0.078534 -0.25761 0.126816 -40.0577 0.062792 
 

26 3 3 2 1 2 1 3 1 0.428214 0.003881 0.08247 -0.00615 -40.2808 0.127104 
 

27 3 3 2 1 3 2 1 2 -0.41677 0.362928 0.037754 0.444637 -40.4424 0.107137 
 

 
 

 
When the above four Kernel functions are selected in solving 
different problems, the results obtained from SVM, as based on 
different parameters, may also have a difference. Thus, how to 
adjust SVM parameters to establish classifiers is very important. In 
prediction learning, sample attributes, structure, and model and 
parameter selection are important issues. Currently, the most used 
method for adjusting parameters is the Grid Algorithm (Hsu and Lin, 
2002; Lin and Lin, 2003). The above methods are based on the 
two-class SVM, which are inherently two-class classifiers; when 
conducting multiclass classification with SVM, the given training set 
is used: 
 

T  x1, y1 ,x2 , y2 ,   xn , yn X Y 
n
 

 
Where n is the number of trained product samples. The parameter 
selection procedure is, as follows: (1) Punishment factor C denotes  
the eclectic degree between decision function complexity and 
wrong decision. (2) Sparsity parameter v approximates the 

percent of noise data in the total sample. When  v 0.3,0.6, the  
model is ideal. (3) Kernal function, here the radial basis function is 
often used. 
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Where  is width of the kernel function.  
 

 
 
RESULTS AND DISCUSSION 
 
In this study, the experiments were conducted based on 
different ventilation positions when lab doors are opened 
or closed to measure polluted particles in labs. For each 
experiment combination, measurement was conducted at 
four different time points in order to obtain experimental 

data y1 ~ y4 , and there were 27 experimental 
 
combinations. The experimental data totaled to 108. The 
measured data were transformed into implementation 
data [-1, 1]. In addition, numerous polluted particles had 
the quality feature of the smaller-the-better (STB). The 
SN ratio of each experimental combination was 
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Table 2. Comparison of number of polluted particles in RMFN with RNN. 
 

Network predict of          RBFN           SVM 
 

pollutant particles     Parameter Accuracy/RMSE    Parameter Accuracy/RMSE 
 

 Model 1 { 
C1

 , 
1

 }={1, 0.1} 0.893/0.056 { 
C1

 , 
1

 }={1, 0.1} 0.871/0.155 
 

 Model 2   { 

C
1 , 


  
2
 }={1, 5} 0.869/0.089  { 

C
1 , 


  
2
 }={1, 5} 0.882/0.056 

 

 Model 3  { 
C1

 , 


 
3
 }={1, 10} 0.962/0.023 { 

C1
 , 


 
3
 }={1, 10} 0.881/0.064 

 

 Model 4 { C 2  ,  1  }={10, 0.1} 0.963/0.006 { C 2 ,  1  }={10, 0.1} 0.891/0.063 
 

SVM                

   

C 
   

 
  

0.963/0.016 
  

C 2 
 

 
  

0.940/0.044 
 

Vs 
Model 5 

{ 
2 

, 
2

 }={10, 5} { , 
2

 }={10, 5}  

            
 

RBFN Model 6 { C 2 ,  3 }={10, 10} 0.964/0.011 { C 2 ,  3 }={10, 10} 0.944/0.019 
 

                  

 Model 7 { C 3 , 1 }={50, 0.1} 0.9642/0.005 { C 3 , 1 }={50, 0.1} 0.955/0.014 
 

                

 Model 8 
{ 

C 3 
, 
 2

 }={50, 5} 
0.967/0.006 

{ 
C 3 

, 
 2

 }={50, 5} 
0.954/0.027 

 

             
 

 Model 9 { C 3  ,  3 }={50, 10} 0.959/0.005 { C 3 ,  3 }={50, 10} 0.933/0.056 
 

                  

 
 

 
calculated according to Equation (1). After transformation, 

experiment data and SN STB are as shown  
in Table 1.  

In this study, the above experimental factors, data of 

level combination, and yi of each experiment  
combination were used as the testing data set of RBFN 
and SVM. The experiment factors and level combinations 
are used as input variables, and the corresponding S/N 
ratio is used as the output variable. The data totaled to 
27. In the network establishment experiment, 20 data 
were randomly selected as the training set, while the 
remaining data were used as the testing set to establish 
RBFN and SVM. Next, RMSE was used as an indicator to 
evaluate network performance.  

RBFN and SVM parameter settings may affect network 
prediction results. The experimental parameters of C ={1,  
10, 50} and δ={0.1, 5, 10} were used for testing. Testing 
of each group was conducted 10 times, with average 
correction rate and RMSE as summarized in Table 2. 
Based on the results of Table 2, it can be seen that Model 
8 had the optimal test value of RBFM, and test  
accuracy/RMSE is 0.967  0.006; while Model 2 had the  

worst value, with test accuracy/RMSE of 0.869 


 0.089. 

The accuracy difference of the two models was 10%. In 
Model 8, both RMSE=0.006 and stability were relatively 
better. Based on the test results of the SVM network, the 
test value was the best in Model 7, with a test 
accuracy/RMSE of 0.955/0.014, and the test value was 
the worst in Model 1. The accuracy difference is 7.4%, 
and in Model 7 RMSE =0.014, with better stability. The 
RBFN network had the best test accuracy (0.967/0.006), 
which is higher than SVM (0.955/0.014), and the worst 
test performance of RBFN (0.869/0.089) was 0.02 lower 
than SVM (0.871/0.155). However, of the 9 test 
combinations, PBFN had 7 groups (Model 3-Model 9) 

 
 

 
that were superior to SVM‟s optimal test result. Overall, 
the RBFN network performance is better than SVM, and 
has good stability. Model 8 was the best among all 
experimental combinations. 
 
 
Z-W control chart 
 
The Z-W control chart is SPC in order to monitor the 
short run process. It is mainly used to standardize data 
and analyze the same quality features of products with 
different material codes, which are recorded in one 
control chart when production has small batches, and 
sufficient data cannot be used to estimate process 
parameters. The W control chart is an extension of the R 
control chart. Ordinary control chart technologies depend 
on huge data to estimate process parameters, such as 
mean value and standard deviation of process; however, 
in a short run process there is insufficient data to 
estimate process parameters. Under this production 
condition, the same machines or processes can be used 
to produce the same products with different material 
codes, or products of different types. In terms of the Z-W 
control chart feature, this study used frequency of 
opening the lab door, per unit time, as the number of 
batches, the pollutant index as an air quality indicator, 
and a RBFN system to predict air quality. The predicted 
value was transformed into an Excel file in order to 
establish an RBFN Z-W real-time air quality monitoring 
system. Based on the neural prediction network, the 
predicted data, and the Z-W control chart, a real time 
monitoring system is established to monitor the air quality 
of the return inlet and air quality changes (0.5 h) in the 
lab. Regarding control charts, the Z control chart can be 
used to monitor whether the air quality in the lab meets 
standard requirements, and a W control chart can be 
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Figure 1. RBFN- ZW (0.5 h) air quality management diagram. 

 
 

 
used to monitor the stability and changes of indoor air 
quality. An inlet air quality monitoring and warning system 
management model can reduce the work load of 
management personnel, improve lab quality detection 
levels, and establish an industry standard. In interpreting 
patterns on the Z chart, we must first determine whether 
or not the W chart is in control. Some assignable causes 
show up on both Z and W charts. If both the Z and W 
charts exhibit a nonrandom pattern, the best strategy is to 
eliminate the W chart assignable causes first. If one or 
more points fall between the warning limits and the 
control limits, or very close to the warning limit, we should 
be suspicious that the air quality process may be 
operating properly. The quality monitoring model of a 
dust-free room, as based on the neural network and 
control chart techniques is as shown in Figure 1. 
 
 
Conclusions 
 
In recent years, air quality management of dust-free 

rooms is increasingly rigorous. The Z-W control chart was 
often used for monitoring quality in production and 
manufacturing. This study established an air quality 
monitoring system based on neural network and Z-W 
control chart techniques. The main purpose is to establish 
a quality change monitoring method that uses the Z-W 
control chart production characteristics of multi-product 
and small batch, which method uses time as the main 
axis and 0.5 h as the measurement unit under indoor air 
quality change conditions, recorded as personnel come 
and go from a lab. In particular, in combination with 
Taguchi quality engineering, the RBFM neural network 
prediction system can be established after air detection is 
planned according to positions in the 

 
 

 
experiment. This system can estimate a result before 
detection, and the predicted values are summarized into 
a Z-W quality management chart, through which air 
quality changes and tendencies can be diagnosed in 
advance. These findings differ from traditional ex-post 
detection and improvement models. Currently, industries 
only require prediction techniques. This model can be 
widely used in time-series quality change diagnosis, such 
as environment temperature monitoring, and environment 
quality changes and diagnosis. 
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