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This paper proposes a novel hybrid algorithm for the integration of systematic preventive maintenance 
policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving 
approach for optimizing the processing time and methods based on metaheuristics. The proposed 
approach is inspired by the behavior of the human body. This hybridization is between a multi agent 
system and inspirations of the human body, especially genetics. The effectiveness of our approach has 
been demonstrated repeatedly in this paper. The proposed approach is applied to three preventive 
maintenance policies. These policies are intended to maximize the availability or to maintain a minimum 
level of reliability during the production chain. The results show that our algorithm outperforms existing 
algorithms. We assumed that the machines might be unavailable periodically during the production 
scheduling. 
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INTRODUCTION 
 
One of the assumptions of the most studied scheduling is 
the consideration that machines may not be periodically 
available during the production scheduling. Although 
many researchers have attempted to integrate the 
production and preventive maintenance planning by 
different methods, some of these methods are so 
complex that one cannot independently code them to 
achieve the same effectiveness, or some strongly used, 
the specific functionalities of the original problem 
considered cannot be extended to other problems.  
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This paper proposes to apply a simple methods of 
integration, yet easily extendable to other scheduling 
problems of the machine. This paper examines the 
scheduling of a workshop under the hybrid flow shop 
systematic preventive maintenance.  

The objective is to minimize the execution time. A multi 
agent based on emergence method, including genetic 
algorithm, and some constructive heuristics are 
developed to tackle the problem. 
 
 
SYSTEMATIC PREVENTIVE MAINTENANCE 
 
Companies need different types of machines to produce 
goods. Each machine is not reliable in the sense that it 
deteriorates with age and use, and ultimately fails (Kelly
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and Harris, 1978). Maintenance operations can be 
classified into two major groups: corrective maintenance 
(CM) and preventive maintenance (PM). The CM 
corresponds to actions during failure that has already 
occurred. The PM is the measure of a system while it is 
still active. The PM is done to maintain the system at the 
desired operation.  

Several policies can be defined in order to determine 
when it is necessary to conduct operations on PM 
machines according to various criteria (Ozekici, 1996; 
Gertsbakh, 1977; Nakajima, 1989; Barlow and Hunter, 
1960). The following are three classic policies (Celeux et 
al., 2006). 
 
 
Policy I: Preventive maintenance at fixed time 
intervals and predefined 
 
Operations of the PM are provided in advance in 

predefined time intervals (TPMF) regardless of 
probabilistic models for the time of failure and make the 
best use of outages after a week, a month or even 
periods of annual production cycles. In this policy, the 
fixed time intervals are determined and PM operations 
are performed exactly these time intervals. As we have 
assumed that the Jobs are non-preemptive (the process 
of a job cannot be interrupted), whenever there is an 
overlap between the processes of a job and the 
operations of the PM (Bunea and Bedford, 2001). 
 
 
Policy II: Model of the optimal period for preventive 
maintenance, maximizing machine availability 
 
Classically, the optimal period between two sequential 
preventive maintenance activities is determined by 
maximizing machine availability. In this policy, the PM is 
performed based on the optimal maintenance period. The 
time of failure is assumed to follow a Weibull probability 
distribution, T ≈ W [θ, β] with β> 1. Tr is the number of 
time units that repair and Tp is the number of time units of 

the PM. TPM is the interval between two consecutive PM. 
The objective of this policy is to maximize system 
availability. According to Kutanoglu (2003), the optimal 

maintenance TPMop can be calculated by the Equation 1: 
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In general, we can say that the policy II is to conduct PM 
whenever a machine is in units of time TPMop operation. 

 
Policy III: Maintain a minimum threshold of reliability 
for a given production period t 
 
In some systems, aging and wear affect the failure rate, that 
is to say, it can be increased over time. This policy is to 

 

 
 
 
 
 

conduct a systematic PM after a TPM to ensure a 

minimum of system reliability (R0 (t)) from time t = 0. It is 
assumed that the PM restores the machine to good as 
new condition. In this case, the PM will be conducted at 

regular intervals 0, TPM, 2 T PM, 3 TPM, …..., N TPM which 
are considered as points of renovation. When time to 
failure follows a Weibull model, T ≈ W [θ, β], with β> 1 
(the failure rate increases with time), the time between 
the PM in this policy can be obtained by the Equation 2: 
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Integration of PM and production scheduling in policy III is 
made the same way as we do in policy II.  

In Policy II and III, the PM depends on the extent of 
time that the machine is in operation, in contrast to policy 
I where the activities are performed PM function of time 
(the time of operation of the machines n is not important). 
Another problem is the duration of the activities of the 

PM, which is called DPM (Kutanoglu, 2003). 
 
 
HYBRID FLOW SHOP SCHEDULING 
 
The hybrid flow shop scheduling problem (HFSP) can be 

stated as follows: consider a set of n jobs to be processed in 

m stages. Each stage i can have several identical machines 

in parallel, denoted by mi. In HFSP, we need all the jobs go 

through the stages of the same order starting from stage 1 to 

stage m. Each job can be operated by any machine all in 

one stage, however, when it is assigned to a machine, the 

process cannot be interrupted. Each machine can run on 

only one job at a time. There is no precedence constraint 

between jobs, that is to say, they can be processed in any 
order. The processing time of each job j at stage i (denoted 

by Pj,i) i is fixed and known in advance. Since the machines 

are identical, the processing time of a job is a constant stage 

between machines on this stage. In HFSP, there are two 

dimensions of decision: 
 
i) Sequence job.   
ii) Assign the job to machines on each stage.  

 
Figure 1 shows a diagram of a hybrid flow shop workshop. 
 
 
LITERATURE REVIEW OF HFSP PROBLEM WITH 
MAKESPAN CRITERION 
 
Many realistic assumptions have been incorporated into 
scheduling problems. For example, due to the interaction 
between the activities of production and maintenance, 
many researchers have studied together to plan two 
activities.  

Adiri et al. (1998) shows that the problem of Flow Shop 
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Figure 1. Diagram of a hybrid flow shop workshop. 
 

 
with downtime on one machine is NP-hard.  

Kubiak et al. (2002) explores scheduling a flow shop with 

availability constraints (SFSAC). He considers two variants 

of non-preemptive SFSAC. In the first variant, the starting 

times of maintenance activities are fixed, while in the second 

the starting times of maintenance activities are expected to 

be flexible. An algorithm based on genetic algorithm and 

taboo search is applied to solve the problem.  
Cheng and Wang (2005) explores the non-preemptive 

scheduling of two stages Flow Shop with one machine on 
the first stage and m machines on the second stage in 
the minimization of the execution time. They assume that 
each machine had over a lockup period and these 
periods are known in advance. They also investigate the 
worst case performance of three other heuristics.  

Reeves (2005) intend to integrate a single machine 
scheduling and planning of preventive maintenance. They 
develop a genetic algorithm to solve the integrated model 
developed by Kutanoglu (2003).  

Blazewicz et al. (2001) investigate the two machines 
Flow Shop by any number of downtime on a single 
machine and prove that the problem of minimizing the 
makespan is strongly NP-hard.  

Breit (2006) addresses the problem of scheduling n 
preemptive job in a Flow Shop two machines on which 
the first machine is not available for processing during a 
given time interval.  

Allahverdi (1995) studied the problem with stochastic 
machine breakdowns and time settings separated. Yang 
et al. (2008) considered a two-machine flow shop where 
maintenance activities must be made after obtaining a 
fixed number of jobs. The durations of these maintenance 
activities are constants.  

Schmidt (2000) survey existing methods to solve 
scheduling problems under constraints of availability and 
the complexity of the results. 
 
 
METHODS OF SOLVING THE PROBLEM OF 
SCHEDULING FLOW SHOP 
 
Minimizing the makespan in the case of general flow shop 

101          Int. Res. J. Mech. Eng. 
 
 

 
is NP-hard in the strong sense. Several heuristics have 
been proposed to solve it, and especially that of Johnson 
and Nawaz Enscore and Ham (NEH). Each of these 
heuristics gives good results, but do not guarantee the 
optimal solution. 
 
 
Johnson’s algorithm 
 
Johnson's algorithm is a paradox scheduling. It is 
undoubtedly the most cited reference in the world of 
scheduling. Hardly anyone has read it, it has virtually no 
industrial interest, but the originality of its approach and 
simplicity make it a "cult object".  

Johnson's algorithm (Mccall, 1956) is applied to a 
problem of two-machine Flow Shop and the criterion is to 
maximize the Cmax (makespan). 
 
 
NEH algorithm 
 
In 1983, Nawaz, Enscore Jr. and Ham proposed an 
algorithm based on the assumption that a lot with a total 
execution time is high priority (the lot is located primarily 
in a partial ordering) compared a lower task in the case of 
minimizing makespan. We adapted this heuristic for the 
case of minimizing the sum of the delays, focusing on 
tasks that have the value: 
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Other methods of resolution 
 
There are other methods for solving the scheduling 
problem, such as: 
 
i) The application of heuristic shorter duration of treatment 
(or HSDT) for HFSP: HSDT organizes Jobs in ascending 
order processing time Jobs in stage 1 (Adiri et al., 1998).   
ii) The application of heuristic longer duration of treatment 
(or HLDT) for HFSP: HLDT organizes Jobs in decreasing 
order of processing time Jobs in stage 1 (Adiri et al., 1998).  
 
 
LIMITATIONS OF EXISTING METHODS 
 
Although a large number of methods, including mathematical 
programming, different criteria and heuristics have been 
presented to integrate production scheduling and 
maintenance, they have many drawbacks.  

For example, the proposed methods are often quite 
complex and require arduous tasks of coding to implement. 
The Exact methods are not practical for small instances (up 
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to 10 to 15 Jobs) and even in this case, the computation 
time tends to be very high. 
 
 
MULTI-AGENT SYSTEM AND GENETIC ALGORITHM 
APPROACH (MASGA) 
 
Our proposed multi agent approach is based on emergence method; 

genetic algorithm (GA) looking for a problem space with a population of 

chromosomes, each of which represents a coded solution. Fitness value 

is assigned to each chromosome based on its performance. The most 

desirable is the chromosome which has the smallest value. The 

population evolves through a set of operators until a stopping criterion is 

visited. A typical iteration GA, a generation proceeds as such: 
 
- The best chromosomes of the current population (Nr individuals) 
are copied directly to the next generation (strategy of the elite).   
- A selection mechanism selects the chromosomes of the current 
population so that the chromosome with the highest fitness value 
decline has more chance of being selected.   
- The selected chromosomes mate and produce new offspring 
(crossover).   
- After the breeding process, each offspring could mutate into 
another mechanism called mutation with probability Pm.   
- Then the new population is evaluated again and the whole 
process is repeated (Goldberg, 1989).  

 
Flowchart of our approach MASGA 
 
Figure 2 shows a flowchart of our approach MASGA for the 
integration of maintenance policies in hybrid flow shop scheduling. 
Each agent in our approach performs the same process, that is, the 
calculation of the objective function (fitness), which is in our case 
the value of the makespan. 

 
General procedure of our approach MASGA 
 
The general procedure of our proposal summarized as follows: 
 
 

Procedure the proposed MASGA Algorithm  
Generating a set of chromosomes (TP) as a starting population 

while a stopping criterion is not reached do  
Calculate the values of Fitness  
Perform the elite strategy / / Nr persons are copied to the 

next generation  
For I = 1 to Nr + TP to  

Select two parents using a selection mechanism 

Perform crossover on two selected parents and  
Generate the ith descending  

If rand <Pm then / / rand is a random number 

uniformly distributed (0, 1)  
Make a mutation in the i-th descendant 

endif  
endfor 

Endwhile  
end 

 
 

 
Each agent in our approach performs the following operations: 
 
- Produce a set of chromosomes (TP) as a starting population.   
- Calculate the values of Fitness (makespan).  
- Select two parents using a selection mechanism.  

 

 
 
 
 
- Perform uniform crossover on two selected parents.  
- Perform a single point mutation type.  

 
This work is repeated until the arrival to the agent that the value of 
the lowest fitness. 

 
Coding scheme and operators of MASGA 
 
In GA, the representation of chromosomes is binary strings 
consisting of 0 and 1, which is obviously not appropriate to describe 
HFSP because it is quite annoying to represent and use to 
schedule in this form. 

 
Random key 
 
The coding scheme is random key (RK), the first representation 
proposed by Norman and Bean (1999) for problems of several 
identical machines and later used by (Goldberg, 1989; Norman and 
Bean, 1999; Zandieh et al., 2006).  

The most important advantages of this type of coding scheme are 
to be simple to implement and easily adaptable to all operators. It 
could be described as follows: 
 
 

- Each Job is assigned a real number whose integer part is the 
number of the machine to which the job is assigned and whose 

fractional part is used to control the Jobs assigned to each 
machine.  

 
- Random numbers are used only for the first stage. They 
determine the sequence and assignment Job only for stage 1.  

 
- For all successive stages i, i = {2, 3, ..., m} Job sequence is 

determined by the earliest time for completion of Jobs in the 

preceding stage and the assignment rule the machine is the first 

machine available. For example, consider a problem with n = 4, 

m = 2, m1 = 2, m2 = 2.  

 
For our problem, we generate four random numbers from a uniform 
distribution between (1, 1 + m1) for the first stage (Figure 3).  

It is well known that the initial solutions can strongly influence the 
final results obtained by the GA. We therefore generated initial 
solutions as follows: four solutions are produced by the heuristics 
HSDT, HLDT, Johnson rule and NEHH, and the rest is randomly 
generated.  

Chromosomes low makespans are the most desirable and, therefore, 

a number of chromosomes (Nr) with the lowest values of makespan are 

automatically copied to the next generation. This mechanism is called 

reproduction. The rest of the chromosomes (TP - Nr)% or offspring are 

produced by crossing two other sequences or relatives by an operator 

called crossover operator. The crossover operators should avoid 

generating infeasible solutions. 

 
Selection mechanism 
 
For selection of parents to undergo crossover, we use the 
classification selection that could be described as follows: 

 
- Individuals of the current population are first sorted according 

to their objective functions.   
- Each individual is assigned a probability normalized so that 

the best solutions are more likely to be selected.  
 

- Then, individuals are randomly selected as parents to submit 
to operators based on their probabilities.  
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Figure 2. Flowchart of our approach MASGA for the integration of maintenance policies in hybrid flow 
shop scheduling. 

 
 

 

 2,96  1,58  2,22 1,13    

 Figure 3. Encoded solution using CK representation.   

        
Parent 1 2,66 1,58  2,92 1,13  2,64 
       

Parent 2 1,42 2,81  2,12 1,92  2,48 
       

Random N° 0,62 0,34  0,97 0,12  0,89 
       

Child 2,66 1,58  2,12 1,13  2,48 
 

Figure 4. Procedure for uniform crossover applied to an example 
with n = 5 and m1 = 2. 

 
 

 
Crossover uniform set 

 
The goal is to generate a better offspring, that is to say, to create 
better sequences by combining the parents. Our crossover is 
uniformly set (CUS), because it has shown its effectiveness in 
HFSP in previous studies in the literature (Goldberg, 1989; Norman 
and Bean, 1999; Zandieh et al., 2006). It is necessary to specify the 
work of CUS by random keys and defined as follows: 
 
 

- For each job a random number between (0, 1) is generated.  
 

- If the value is less than 0.8, corresponding to the Job Board 
parent 1 is copied to the child if the parent RK 2 is selected.   

- The Jobs are sorted in ascending order of RK.  

 
 

 
The procedure is illustrated numerically by applying it to an 

example with n = 5 and m1 = 2 as shown in Figure 4. 

 
Single point mutation 
 
A mutation operator is used to tweak the sequence, that is, 
generate a new sequence, but similar. The main purpose of the 
application of mutation is to avoid convergence to a local optimum 
and diversifying population. The mutation operator can also be seen 
as a simple form of local search.  
Many researchers have concluded that only the single point 
mutation, called SPM can provide better results than other 
mutations such as SWAP or inversion.  

Therefore, we use the SPM mutation (Ansell and Phillips, 1997; 
Barros, 2003). SPM procedure can be stated as follows: 
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Before Mutation 1,62 2,34 1,97 2,12 2,89 
      

After  Mutation 1,62 1,68 1,97 2,12 2,89 
 

Figure 5. Procedure single point mutation applied to an 
example with n = 5 and m1 = 2. 

 
 
 
Table 1. MASGA levels parameters. 
 
 Parameters N° of level Levels 
 Size population 3 50, 100, 150 
 (Nr, Pm) 3 (1, 0.10), (2, 0.15), (3, 0.20) 

 
 

 
- RK of Job randomly chosen at random is regenerated. Figure 5 
shows an illustrative solution that mutates. 
 
 
RESULTS AND DISCUSSION 
 
Here, we evaluate our multi-agent approach based on 
emergence method proposed. Our goal is to compare our 
approach with heuristics, NEH, Johnson rule (m/2, m/2), 
HSDT and HLDT.  

We implemented its heuristics in MATLAB 7.0 that runs 
on a PC Intel Core 2 Duo 2.0 GHz and 2 GB RAM. The 
stopping criterion used when testing with all instances of 

heuristics is a set time limit of the CPU set to n
2
 × m × 1.5 

Ms. This stopping criterion cannot only be longer than the 
number of Jobs or increase in stages, it is also more 
sensitive to an increase in the number of Jobs than the 
number of stages.  

We use the relative percentage deviation (RPD) as a 
performance measure to compare common methods. The 
right solution obtained for each instance (named Minsol) 
is calculated by an algorithm. RPD is obtained by the 
following formula: 

  −   
 

= 
  

× (4) 
 

 
 

     
 

 
where Algsol is the value of the objective function 

obtained for a given algorithm and instance. Clearly, 
lower values of RPD are preferable. 
 
 
Setting the parameters 
 
It is known that the different levels of parameters affect 
clearly the quality of the solutions obtained by our 
approach MASGA. We applied a set of parameters on the 
size of the population (SP), the number of solutions 
directly copied to the next population (Nr), the probability 
of mutation (Pm). Table 1 show the levels considered. 

 
 

 
A set of 30 cases in group 3 (n = 40, 70, 100) is 

generated and solved by the algorithms. After analyzing 
the results MASGA we choose Nr = 10, Pm = 0.15 and 
SP = 100. 
 

 
Data generation 

 
The data needed to solve this problem consists of two 
parts, the data on the production scheduling and data for 
preventive maintenance. It is necessary to process that 
data must be produced in order to ensure that a large 
number of operations performed on each PM would 
machine. If the time between two consecutive operations 
of the PM is less than the maximum processing time, 
cannot be certain Jobs never treated. On the other hand, 
if time becomes very large, it is very likely that no 
operation of the PM is required.  

The first part of the data includes the number of Job (n), 
number of stages (m), the number of identical machines at 

each stage (mi) range of processing time (Pj,i) and time 

loans; Is n = {40, 70, 100}, and m = {2, 4, 8}. To set the 
number of machines at each stage, we have two sets. In the 
first, we have a number of uniform random distributions of 
machines ranging from one to three machines per stage, 
and in the second, we have a fixed number of two machines 
on each stage. Times ready for stage 1 are set to 0 for all 

Jobs. Times ready to stage (i + 1) is the execution time in 
stage i, so these data should not be generated. Table 2 
shows the factors and their levels.  

The second part of the data is divided into three parts, 
each of which considers a policy. As mentioned above, the 
generation TPMF, TPMop and TPM must be made with the 
utmost care. To do this, we need to define an artificial  
variable "xi" to estimate the workload on the machines in 
each stage i as follows: 



105          Int. Res. J. Mech. Eng. 
 
 

 
Table 2. Factors and levels. 

 
 Factors Levels 

 

 Number of Jobs 40, 70, 100 
 

 Number des stages 2, 4, 8 
 

 
Distribution of a machine 

a. Constant : 2 
 

 
b. Variable : U (1, 3)  

  
 

 Processing time U (1, 99) 
 

 
 

 
Table 3. Average RPD for the algorithms grouped by n and m for 
policy I. 

 

n m 
  Algorithms   

 

MASGA NEHH John HSDT HLDT  

  
 

 2 3.36 8.69 20.16 24.49 30.48 
 

40 4 3.64 9.96 19.98 30.63 32.01 
 

 8 4.37 7.75 22.13 28.59 30.75 
 

 2 4.40 8.29 25.17 31.11 27.26 
 

70 4 2.66 9.80 18.03 25.12 30.91 
 

 8 3.87 7.11 19.02 21.30 28.06 
 

 2 2.47 5.68 23.75 31.17 31.32 
 

100 4 3.11 4.57 24.48 24.08 26.79 
 

 8 3.52 4.91 20.69 27.18 25.52 
 

Average 3.49 7.42 21.49 27.08 29.23 
 

 
 
 

So that "xi" is the expected number of Jobs on each 

machine in stage i. Therefore, the range of this variable is 
as follows: 
 
xi = {10,13.3,17.5,20,23.3,25,33.3,35,40,50,70,100} 
 
For example, in the case of n = 70, g = 2, m1 = m2 = 2 
and 3, we obtain x1 = x2 = 35 and 23.3. Other data 
required for each policy are generated as follows: 
 
1. The data for the policy I for PM: TPMF are determined 

according to xi. If xi <25, then TPMF = 450, otherwise TPMF  
= 650. The duration of the operation PM (DPM) is set to 
50, 100 and 150% of the processing time.  
2. The data for the policy II for PM: As mentioned earlier, 
there are nine combinations of n and g. For each 

combination, β = {2, 3, 4} is defined. DPM is the same as 
the policy I. In this policy, tp is set to 1 and 8 rpm for all 
experiments. The values of θ are set according to the 
variable x. Levels of θ are chosen to ensure that a 
significant number of transactions would be carried out in 
each PM machine. For example, it should be noted that a 
small value for θ would result in a very large value of 

 
 
 
TPMop then a very large value would probably hinder the 
achievement of certain treatments Jobs on machines 

without interruptions due to the small amount of TPMop.  
3. The data for the policy III for PM: Levels of θ, β and 

DPM are the same as the policy II. The goal is 95% after 

the period t of production, so R0 (t) = 0.95. To calculate 

TPM, it is necessary to determine the time t, which can be 
easily obtained from the processing time of a given 
instance. This is as a result of the processing times being 
uniformly distributed over (1, 99), t = xi * 50.  

All results of the different levels of factors cited in 54, 
162 and 162 scenarios for policy I, II and III, respectively. 
For each scenario, there are 10 different problems that 
result from a total of 540, 1620, 1620 instances. 
 
 
Experimental results 
 
The results of experiments on average for each 
combination of n and m (180 data by the mean) in three 
subsets (Policies I, II and III) are summarized in Tables 3, 
4 and 5. As expected, metaheuristics algorithms perform 
better than the heuristics in the three policies. The 
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Table 4. Average RPD for the algorithms grouped by n and m for policy II. 
 
 

n m 
  Algorithms   

 

 

MASGA NEHH John HSDT HLDT  

   
 

  2 2.79 9.43 16.83 28.37 28.94 
 

 40 4 3.51 9.81 18.82 27.89 31.87 
 

  8 3.20 7.57 18.66 24.28 25.75 
 

  2 4.19 8.98 19.61 28.43 28.96 
 

 70 4 3.11 9.12 18.71 25.17 29.60 
 

  8 3.21 8.62 16.98 28.26 31.52 
 

  2 2.23 6.25 19.98 26.05 31.97 
 

 100 4 3.02 5.31 16.64 27.99 27.53 
 

  8 3.46 5.40 16.54 26.45 26.41 
 

 Average 3.19 7.83 18.09 26.99 29.17 
 

 
 
 

Table 5. Average RPD for the algorithms grouped by n and m for policy III. 
 
 

n m 
  Algorithms   

 

 

MASGA NEHH John HSDT HLDT  

   
 

  2 2.32 8.74 16.06 26.99 25.94 
 

 40 4 3.99 8.36 17.93 24.01 29.57 
 

  8 3.29 7.37 19.70 28.69 28.14 
 

  2 3.23 9.59 17.44 27.18 32.06 
 

 70 4 4.67 9.88 18.56 29.80 29.59 
 

  8 2.49 8.40 21.90 27.32 32.74 
 

  2 4.40 5.34 18.89 30.13 30.49 
 

 100 4 4.94 5.36 20.48 27.44 28.42 
 

  8 3.34 4.13 18.72 31.70 30.51 
 

 Average 3.63 7.46 18.85 28.14 29.72 
 

 
 
 
proposed MASGA provides better results than other 
algorithms in three policies with a RPD of 3.49, 3.19 and 

3.63% respectively, while NEHH get a RPD of 7.42, 7.83 
and 7.46% in the policies I, II and III respectively. The 
results of the RPD of our approach MASGA down all 9 
groups (combinations of n and m) as well as maintaining 
its robustness in the three policies PM.  

As can be seen, NEHH gets remarkably better results 
than other heuristics with RPD 7.42, 7.83 and 7.46% in 

the policy I, II and III. After NEHH, Johnson algorithm gets 
means RPD equal to 21.49, 18.09 and 18.85% in the 
policies I, II and III respectively. The worst of the worst 
performing algorithms are HSDT and HLDT with almost 
30% of RPD. 

Figure 6 shows the graph  means  and least significant 

 
 
 
difference (LSD) intervals for the algorithms. There are 
statistically significant differences between the 
performances of algorithms.  

As shown in Figure 6, the proposed MASGA gives 
good results compared to other algorithms. We analyze 
the interactions between factors such as e.g. the number 
of job, number of stages and type of policy on PM 
algorithm performance. In the end, we outline how RPD is 
obtained by the algorithms with respect to different levels 
of the factors. Due to the significantly worse performance 
of HSDT and HLDT, we subtract from the experience.  

Figures 7, 8 and 9 shows the graph means for interaction 
between different factors of metaheuristics algorithms. 
MASGA provides the lowest RPD in three levels of the 

number of Jobs. In increasing the number of jobs, NEHH is 
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Figure 6. RPD graph mean and LSD intervals (at 95% confidence) for the 
type of factor algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. RPD graph mean for interaction between metaheuristics 
algorithms and number of jobs factor. 

 
 

 
more efficient. Similarly, an increasing number of stages 

results in better performance for NEHH. There is no 
interaction between the performance of algorithms and 
policies PM. In all cases, the MASGA gives the best 
results compared to other algorithms. 

 
 
 
Conclusions 
 
In this paper we presented our work - the integration of 
systematic preventive maintenance policies in hybrid flow 
shop shops scheduling to minimize makespan. It was 
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Figure 8. RPD graph mean for interaction between metaheuristics 
algorithms and number of stages factor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. RPD graph mean for interaction between metaheuristics 
algorithms and policies of PM factor. 

 
 

 
assumed that the machines could be periodically unavailable 
during the production scheduling. Including the criteria here 

were simple but effective. More importantly, they are 
adaptable to all scheduling problems. With this, we have 
overcome one of the key gaps in the integration of 

 
 

 
existing techniques in the literature.  

To solve such a complex problem, we proposed a multi 
agent approach based on emergence method, genetic 
algorithm in which we use advanced operators such as 
uniform set crossover and single point mutation. 



 
 
 

 
We also evaluated the adaptations of some well-known 

heuristics, including HSDT, HLDT, Johnson rule (m/2, 

m/2) and NEHH.  
A benchmark was established with great care to 

evaluate the algorithms. The benchmark content up to 
100 jobs and 8 stages. All results showed that MASGA 
gives satisfactory results compared to other algorithms, in 
addition to its robustness in the three policies of PM. 
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Nomenclature 
 
CM : Corrective maintenance.  
CUS : Crossover uniform set. 
DMP : Duration of preventive maintenance. 
GA : Genetic algorithm. 
HFSP : Hybrid flow shop scheduling problem. 
HSDT : Heuristic shorter duration of treatment.  
HLDT : Heuristic longest duration of treatment.  
MAS : Multi agents system.  
NEH : Nawaz Enscore Ham. 
PM : Preventive maintenance.  
Pj,i : Processing time of each job j at each stage i.  
RPD : Relative percentage deviation, e.  
RK : Random key.  
SP : Systematic preventive maintenance.  
SPM : Single point mutation. 
SP : Size of population. 
TPMF : Time preventive maintenance fixed. 
TR : Time to repair. 
TPM : Time between two consecutive PM. 
TPMop     : Time optimal preventive maintenance. 
Xi : Artificial variable. 
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