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This study presents distributed and lumped hydrological modeling approaches for the Kihansi river catchment in south 
central Tanzania using the Soil and Water Assessment Tool (SWAT). The catchment is source of water for the Lower 
Kihansi Hydropower Plant (LKHP) that supplies 25% power to the national grid and the bio-diverse gorge eco-system in 
lower Kihansi Basin. In the distributed modeling sub-watersheds were defined at the existing gauging stations. There 
are four upper sub-watersheds and ten sub-watersheds located downstream. Three sub-watersheds of the river system 
were separately modelled in a lumped approach. Subsequent parameterization of physically-based soil parameters, 
landuse, and management files were defined. Four quantitative and two qualitative evaluation criteria were used to 
evaluate the prediction performance of SWAT model. Model prediction results using unoptimized parameter sets 
resulted poor modeling performance. Hence parameter specification and optimization was necessary to ensure correct 
hydrological processes. Modelling results using optimized parameter sets resulted better prediction of hydrological 
variables. Finally correction factors were introduced for optimised parameters to facilitate future land cover change 
studies. 
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INTRODUCTION 

 
The great challenge in hydrology today is the develop-ment 
of models that can give reliable predictions of runoff from 
catchments, especially from ungaged ones, and yet to be 
flexible enough to be used to evaluate different management 
scenarios. Despite different philosophy in development and 
application, the history of model development ranges from 
the well-known rational formula (Mulvaney, 1850) to recent 
distributed physically-mean-ingful mathematical models 
(Abbot et al., 1986a,b; Arnold et al., 1998). The recent 
hydrologic models are computer-based and have become 
important in water resources engineering for hydrologic 
forecasts and managing water systems (Duan et al., 1994).  

Recent applications of hydrologic modeling in tropical 
data-scarce catchments (Ndomba and Birhanu, 2008; 
Birhanu et al., 2007; Mulungu and Munishi, 2007; Van 
Liew et al., 2003) suggest a wide use of the SWAT model 
(Arnold et al., 1998). Moreover parameters like curve 
number in SWAT model may be appropriate to reflect the 
impact of changes in landuse or land management on 
agricultural watersheds (Van Liew et al., 2003). Account- 

 
 
 
 
ing for heterogeneity of environmental variables such as soil 
types, land uses, topographic features, and weather 
parameters is essential in order to properly simulate the 
effect of spatially varying properties (Muleta and Nicklow, 
2005). In SWAT model spatial data base of model 
parameters; that is, landuse, soil and crop management files 
are developed using physically-based approach and 
sensitive parameters are identified using the sensitivity 
analysis based on the Latin Hypercube One factor at a Time 
(LH-OAT) method (Van Griensven and Srinivasan, 2005) . 
The LH -OAT method was identified as more stra-tegic, 
efficient, and effective sampling approach that can 
significantly reduce computational demand (Muleta and 
Nicklow, 2005). Parameter optimization is based on the 
shuffled complex evolution (SCE- UA) method (Duan et al., 
1992, 1993) which was more effective and efficient 
compared to other optimization methods (Duan et al., 1994; 
Yapo et al., 1996). Therefore this paper focuses on the 
development of physically-based and distributed 
hydrological model for the data-scarce Kihansi river 
catchment in south central Tanzania using the SWAT 
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Figure 1. Kihansi river catchment and hydrologic networks including sub-watersheds. 
 
 

 

hydrologic model. 
 

 
METHODOLOGY 
 
The study area 
 
The study area, shown in Figure 1, is a catchment located in the 
southern part of the Eastern Arc Mountains (EAMs) of Tanzania. 

The approximate drainage area of the catchment is 581 km
2
 and is 

characterised with mean annual precipitation (MAP) and mean 
annual runoff (MAR) of 1890 and 793 mm respectively. 

There are two water users in the catchment; the gorge eco-
system and the Lower Kihansi Hydropower Plant (LKHP) designed 
for 180 MW run-of-the river type with a possible extension to 300 
MW in the future. The LKHP provides a significant proportion of the 
electricity needs of Tanzania (currently contributes 25% to the 
national grid). There are 8 gaging stations upstream of the recently 
built reservoir and coded by their Field Station Unit location (for 
example, FSU1) and the company who installed the gages (for 
example Nor-Consult as NC1 and NC2).  

The famous endemic Kihansi Spray Toads (Nectophrynoides 
Asperginis) were discovered during the feasibility study of the LKHP 
in the gorge eco-system. Various water allocation proposals and 
conservation measures have been suggested to avoid the reduction 
of power outputs and conserve the ecosystem which is under 
extinction (World Bank, 2001). However, streamflow reduction and 
valley-bottom cultivations, associated with land cover changes pose 
management challenges to the energy-strapped country and the 
existence of the Kihansi Spray Toad population (Birhanu, 2008). 
 
Data 
 
Information used is time series hydro-meteorological data, spatial 

data of landuse, soil, Digital Elevation Model (DEM) and definitions 

of management conditions in the catchment. Daily hydrometeo- 

 
 
 

 
rological data of rainfall, flow, maximum and minimum temperature, 
relative humidity, wind speed and sunshine hours were collected 
from various Tanzanian government institutions. These data were 
checked for systematic errors and representativness. As shown in 
Table 1, climatic data were found to be of shorter length. Missing 
rainfall data were filled using cross correlation and inverse distance 
square method and seasonal mean method was used to fill-in 
missing flow data.  

Soil data were obtained from soil and terrain database for Africa 
(SOTERAF) (Dijkshoorn, 2003) and other soil research studies in 
Tanzania (National Soil Service, 1986) . Three main soil types were 
identified for the study area: nitisols (10%), acrisols (87%) and 
fluvisols (3%).  

Landuse data were based on the 30 x 30 m Landsat Thematic 
Mapper (Landsat TM) prepared from scenes number P168R66, 
P169R66 dated on 26/06/1995, 14/08/1994 and 14/08/1994. The 
data indicated that about 73% of the catchment cover was 
Bushland with Scattered Cropland (BSC), Natural Forest (14%), 
and Grassland with Scattered Cropland (12%). The rest is Open 
Woodland (WO) (Figure 2). The 90 x 90 m resolution DEM for the 
study area was obtained from the Water Resources Engineering 
Department (WRED) of the University of Dar es Salaam, Tanzania. 
The DEM data was archived from the seamless data distribution 
system, EROS available at (http://seamless.usgs.gov). 

 
Parameter derivation 
 
The methodology adopted in the present study focused on the 
development and use of SWAT model parameters using physically-
based approach. Derived soil data parameters include soil type, 
horizon number, lower depth (cm), and percentages of sand, silt, 
clay and rock, organic carbon, colour of the soil and drainage type. 
These data are direct input to the SWAT model and are also used 
to estimate the following parameters; moist bulk density (BD), 
available water capacity (Av), saturated hydraulic conductivity 
(Ksat), Universal Soil Loss Equation, soil erodibility factor (USLE_K) 
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Table 1 Time series data used in the study  

 
S. No Station Data Lat Long Alt Start Date End Date Length % 

 code Type (S) (E) (m)   (Years) Missing 

1 983501 Rainfall 8.25 35.81 1890 09/01/1999 03/05/2004 6 6.63 

2 983502  8.28 35.9 1871 12/01/1996 30/04/2005 10 10.09 

3 983503  8.3 37.75 1820 22/02/1999 31/03/2005 7 4.26 

4 983504  8.33 35.94 1850 02/01/2000 30/04/2005 6 0.16 

5 983505  8.32 35.81 1890 01/01/1998 30/04/2005 8 28.88 

6 983506  8.38 35.93 1860 02/01/2000 30/04/2005 6 3.34 

7 983507  8.4 35.87 1760 01/09/1997 30/04/2005 9 10.59 

8 983508  8.42 35.76 1871 01/01/2000 30/04/2004 5 8.03 

9 983509  8.52 35.85 1410 12/01/1995 31/03/2005 11 1.03 

10 FSU1 Flow 8.34 35.79 1723 01/01/1996 31/12/2004 9 0 

11 FSU2  8.52 35.85 1344 01/01/1996 31/12/2004 9 0 

12 FSU3  8.4 35.86 1648 07/02/1996 31/12/2004 9 0 

13 FSU4  8.35 35.83 1698 07/02/1996 31/12/2004 8 0 

14 FSU5  8.44 35.9 1504 12/04/1996 31/12/2004 9 0 

15 FSU7  8.41 35.81 1598 25/08/1999 31/05/2003 5 0 

16 NC1  8.48 35.82 1520 01/01/1996 31/12/2004 9 0 

17 NC3  8.55 35.85 1349 01/01/1994 31/12/2004 21 11.98 

18 983506 WS,SR, RH, 8.38 35.93 1860 03/02/2000 28/02/2002 3 0 
  Temp        

19 983508  8.42 35.76 1871 29/02/2000 31/12/2001 2 0 

20 983509  8.52 35.85 1410 03/02/2000 31/05/2002 3 0 
 

WS (Wind Speed), SR (Solar Radiation), RH (Relative Humidity), Temp (Maximum and Minimum Temperature).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Landuse data for the Kihansi river catchment. 
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and soil moist albedo (Soil Albedo). From multiple regressions of 
percent sand, silt and clay using 203 data sets provided in 
SOTERAF data base, bulk density was estimated using equation  
(1). 

 

BD  2.26  (0.005(S ))  (0.013(Si))  (0.010(C)) [1] 
 

Where BD is moist soil bulk density (g/cm
3
), S is percentage sand, 

Si is percentage silt and C is percentage clay. The coefficient of 

determination (R
2
) of the regression relation was 0.37. Comparable 

estimates were obtained with previous research studies (Jones, 
1975).  

From the study of Jones (1975) reference was made to 
determine physical soil parameters and estimate the available water 
capacity. Accordingly, the amount of water available for plant 
growth (mm) is the difference between the retained water capacity 
and the volume of water held at 15 bar suction, which is the 
theoretical wilting point, and given as: 

 

Av   v (0.05)  v (15) [2] 

 
 
 

 
Canopy Height (CH), Biomass and Potential Heat Unit (PHU). 
Estimates of LAI for various plantations were archived from the 
world data base research (Scurlock et al., 2001). Canadell et al. 
(1996) presented thorough listings of rooting depths for various 
forests and combinations of forests with grass land covers. 
Similarly, a range of canopy height and initial estimate of total 
biomass was presented for various types of forests world wide 
(Cannell, 1982). The PHU for crop growth was computed from the 
relationship of average temperature (Tav) and base temperature 
(Tbase) presented in the SWAT theoretical manual (Neitsch et al., 
2002). Apart from the definition of soil and landuse parameters, four 
management operations were scheduled, these are: 
planting/beginning of growing season, harvest only operation, 
harvest and kill operation and kill/end of growing season operation. 

 

Model setup, simulation options and efficiency criterion 
 
Water balance is the driving force behind everything that happens 

in the watershed (Neitsch et al., 2002) and SWAT uses equation 7 

to simulate the water balance.  
    t 

 

Where  Av is  the  amount  of  water  available for  plant growth, 
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v (0.05) the retained water capacity, and v (15) is the wilting 
i1 

 

[7] 
 

point. Regression equations were developed (Hall et al., 1977) to where SWt  is the final soil water content (mm H2O), SW0  is the 
 

initial soil water content on day i (mm H2O), t is the time (days), Rday  

calculate the retained water capacity and the wilting point  
 

 is the amount of precipitation on day i (mm H2O), Qsurf is the amount  

    
 

v (0.05)  47.00 0.25(C)  0.10(Z) 1.12(X ) 16.52(Db ) [3] 
of  surface  runoff  on  day  i  (mm  H2O),  Ea  is  the  amount  of 

 

evapotranspiration on day i (mm H2O), wseep is the amount of water 
 

 v (15)  2.94  0.83(C)  0.0054(C) 2 
[4] 

 entering the vadose zone from the soil profile on day i (mm H2O), 
 

  and Qgw is the amount of return flow on day i (mm H2O). Equations 
 

    
 

Where C is percent clay (<2  m), Z is percent silt (2 – 60  m), X is 
describing the computation of each of the water balance component 

 

of equation 7 are presented in the SWAT user manual (Neitsch et 
 

percent  organic  carbon  and  Db  is  bulk  density.  In  the  study, al., 2002). 
 

saturated hydraulic conductivity (Ksat) was determined for the given To  indicate  distributed  modeling  using  SWAT  model,  the 
 

texture class in different horizons using transfer functions provided catchment was discretised into 14 sub-watersheds as shown in 
 

by Nemes et al. (2001). The function is a prediction of the Mualem- Figure 1. Similarly, the catchment was separately modelled in a 
 

van Genuchten parameters (Hollis et al., 2006) for the individual lumped approach at three watersheds to evaluate performance 
 

soil horizons. The parameter  Ks provided in equation (5) was efficiency of flow predictions. These are FSU2-L (119 km
2
), NC1-L 

 

transformed as K S *  ln(K Sat ) . In the  equation the organic 
(378 km

2
) and NC3-L (581 km

2
). Eight years of data (1997 - 2004) 

 

were available for calibration and validation. At the outlet of the 
 

matter content was estimated to be 1.72* organic carbon.  catchment,  that  is,  two-third  of  the  data  was  used  for  model 
 

    calibration  and  the  remaining  data  for  validation.  Sensitive 
 

KS *  7.7550.0352*S  0.93*topsoil0.967*D
2
 0.000484*C

2
 0.000322*S

2
  parameters  were  identified  based  on  sum  of  squares  (SSQ) 

 

0.0748*OM
1

 0.643*ln(S) 0.01398*D*C 0.1673*D*OM0.02986*topsoil*C 
objective function (Van Griensven and Srinivasan, 2005). Model 

 

performance  was  assessed  using  four  quantitative  and  two 
 

0.03305*topsoil*S 
    

   qualitative evaluation criteria (Table 3). These are computation of 
 

   [5] (1) deviation of stream flow volume (Dv), (2) the Nash and Sutcliffe 
 

    coefficient of efficiency (NCE) (Nash and Sutcliffe, 1970), and (3) 
 

where C is percent clay, S is percent silt, OM is organic material prediction efficiency (coefficient of determination, R
2
), (4) index of 

 

content, D is bulk density; topsoil and subsoil were qualitative volumetric fit (IVF), and visual inspection of (5) hydrographs and (6) 
 

variables having the value of 1or 0 respectively.   flow duration curves. The importance of these evaluation criteria 
 

    were briefly explained in the works of Van Liew et al.(2003) 
 

The USLE_K was estimated based on equations presented in the  
 

SWAT theoretical manual. Neitsch et al. (2002) gives equations 
RESULTS AND DISCUSSION 

 

describing  the  derivations  of  USLE_K.  For moist  soil albedo, 
 

equation (6) (NRCS, 2008) was used to approximate the values 
 

SoilAlbedo  0.069 * (ColorValue)  0.114 [6] 
 
Table 2 shows the soil data for the SWAT model input in the 
Kihansi river catchment. Regarding land cover parameters, few, but 
known and basic parameters were customized based on previous 
research findings in the tropical catchments while keeping most 
parameter settings as presented in the SWAT manual (Neitsch et 
al., 2002). These are the Leaf Area Index (LAI), Root Depth (RD), 

  
Poor prediction efficiencies were observed with the use of 
catchment characteristics. In this case predicted flows 
were tending to be higher with poor seasonal distri-
butions. For bigger watersheds (NC1 and NC3) however, 
the percentage deviation (Dv), the prediction efficiency 

(Pe (R
2
), and the long-term water balance (IVF) were 

found to be promising prior optimization as shown in 
Table 4. Similarly, a mixture of variations in model predic- 
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Table 2. Soil parameters and data  

 
 

Soil Parameters 
     Type of soil      

 

   
Eutric Fluvisols 

 
Haplic Acrisols 

 
Umbric Nitisols 

 
 

       
 

 Horizon Number 1 2 3 4 5 6 1 2 1 2 3 4 
 

 Bottom Depth 150 300 500 600 950 1200 240 680 150 500 1000 1500 
 

 Depth of Each Layer 150 150 200 100 350 250 240 440 150 350 500 500 
 

 Sand (%) 16 20 24 5 60 45 83 72 39 26 22 19 
 

 Silt (%) 43 23 35 34 23 37 6 5 17 14 12 14 
 

 Clay (%) 41 57 41 60 17 18 11 23 44 60 66 67 
 

 BD (gm/cm
3
) 1.2 1.3 1.2 1.2 1.4 1.3 1.5 1.5 1.3 1.3 1.3 1.3 

 

 Total Carbon (g/Kg) 17 9 3 6 2 2 14 9     
 

 Carbon (% soil Wt) 1.7 0.9 0.3 0.6 0.2 0.2 1.4 0.9 4.5 0 0 0 
 

 Organic Matter 2.92 1.55 0.52 1.03 0.34 0.4 2.41 1.55 7.74 0 0 0 
 

 USLE_K 0.15 0.13 0.16 0.24 0.17 0.18 0.05 0.1 0.1 0.12 0.11 0.12 
 

 Ksat* (cm/day) 3.53 1.13 4.01 3.54 4.39 4.11 4.65 3.38 2.86 1.53 1.19 1.1 
 

 Ks(cm/day) 34 3.1 57.1 34.4 80.4 61 104.5 29.5 17.4 8.47 8.16 8.16 
 

 SOL_AWC 0.16 0.11 0.13 0.13 0.15 0.18 0.15 0.11 0.14 0.1 0.1 0.1 
 

 Albedo 0.09 0.16 0.16 0.16 0.23 0.23 0.09 0.23 0.16 0.16 0.16 0.16 
  

Depths are in mm, BD refers to Bulk Density, SOL_AWC is in (mm H2O/mm Soil). 
 

 
Table 3. Equations of model prediction efficiency measures  

 
S. No Measure of prediction  Equation Target 

 

 efficiency   Values (%) 
 

1 Deviation of stream flow Dv  (Vobs   Vsim )(100) /Vobs 
0 

 

 

volume ( Dv ) 
 

 

    
   

2 Nash and Sutcliffe 

coefficient of efficiency 

(NCE)  
3 Coefficient of determination 

(R
2
) 

 

4 Index of volumetric fit (IVF) 

  

NCE  1    (Qobs  Qsim ) 

2 /(Q
obs  Qmean ) 

2 100 
 

   
 

r  

  Q
obs  


 

Q
obsav 

Q
sim 


 

Q
simav 


 

 100 
 

    
 

 

          

Qobs   Qobsav 
2
     Qsim  Qsimav 

2
 ) 

  
 

    
 

IVF  
Q

sim 
      100 

 

(100)       
  

Q
obs 

  

Where Vobs and Vsim are total observed and simulated streamflow volumes in m
3
, respectively. Qobs and Qsim are daily 

observed and simulated streamflow, respectively. Qmean is the mean observed flow during calibration period. Qobsav and 

Qsimav are average observed and simulated streamflow, respectively during evaluation period. 

 
 

 

tion performances was observed between distributed and 
lumped modeling approaches implying no conclusive 
differences in prediction efficiencies. However, higher Pe 

(R
2
) (>90%) indicate middle flows were better simulated 

in lumped modeling approach. The poor prediction 
efficiency observed with the use of catchment charac-
teristics indicates the need to increase the spatial and 
temporal scale of the data used. For example the climatic 
data are of short record as shown in Table 1 and mean 
seasonal climatic data were used for the entire simulation 

 
 
 

 

period. Similarly the soil data base derived from available 
data (as presented in “Model setup, simulation options 
and efficiency criterion”) is based on developed transfer 
function which might not well predict soil parameters. This 
is observed in poor coefficient of determination result for 
bulk density. Despite these deficiencies the SWAT model 
fairly predicted the hydrologic variables reasonably for 
bigger sub-watersheds prior optimization and it is 
promising to be a suitable hydrological model even in 
data-scarce regions. 
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Table 4. Model performances using physically- based parameter settings  

 
  FSU1 FSU2 FSU3 FSU4 FSU5 FSU7 NC1 NC3 FSU2-L NC1-L NC3-L 

 CN2 69 55 78 78 55 69 69 78 55 78 78 

 SURLAG 4 4 4 4 4 4 4 4 4 4 4 

 RCHRG_DP 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

 SOL_K 43.5 0.8 7.2 7.2 0.8 43.5 43.5 7.2 0.8 0.8 0.8 

 GWQMN 1 1 1 1 1 1 1 1 1 1 1 

 SOL_Z 240 150 150 150 150 240 240 150 150 150 150 

 SOL_AWC 0.15 0.1 0.14 0.14 0.1 0.15 0.15 0.14 0.14 0.14 0.14 

 GW_DELAY 31 31 31 31 31 31 31 31 31 31 31 

 CANMX 0 0 0 0 0 0 0 0 0 0 0 

 BIOMIX 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 GW_REVAP 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 ALPHA_BF 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 

 ESCO 0 0 0 0 0 0 0 0 0 0 0 

 SLOPE 0.112 0.20 0.21 0.16 0.21 0.11 0.11 0.19 0.20 0.16 0.175 

 CNn 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 

 CH_K2 0 0 0 0 0 0 0 0 0 0 0 

 SLSUBBSN 36.585 15.24 15.244 24.39 15.244 36.6 36.6 18.29 15.244 24.39 18.293 

 REVAPMN 1 1 1 1 1 1 1 1 1 1 1 

 SOL_ALB 0.09 0.16 0.16 0.16 0.16 0.09 0.09 0.16 0.16 0.16 0.16 

 EPCO 0 0 0 0 0 0 0 0 0 0 0 

 BLAI 4 5 4 4 5 4 4 4 5 4 4 

 Prediction Efficiency           
 Dv (%) 34 -51 -14 -101 -28 -17 3.8 -8.4 -79 -48 5 

 Pe (R
2
) (%) 4 32 14 14 31 18 26 39 93 89 95.5 

 IVF (%) 66 151 114 201 128 117 96 108 180 147 95 
 NCE (%) -925 -1081 -3448 -8300 -457 -2105 -637 -746 -704 -2029 -349 

 
 

 

High computational efficiency was required to perform 
sensitivity analysis and autocalibration for each of the 
subwatersheds. Based on available resources, specifi-
cation and optimization of sensitive model parameters 
were made (Table 5) that governs response from the 
surface water, subsurface water and the basin. 

In parameter estimation stage, it is important to deter-
mine if spatially distributed predictions are satisfactory so 
that model results from subbasins can be determined with 
reasonable confidence (Muleta and Nicklow, 2005). After 
identifying sensitive parameters the model was calibrated 
using the auto-calibration option by following multi-step 
procedure recommended by Neitsch et al. (2002) and 
Van Liew et al. (2003). The values of the parameters 
used in multi-step calibration procedure were within the 
range suggested in the SWAT user manual (Neitsch et 
al., 2002).The upper subwatersheds (FSU1, FSU3, 
FSU4, and FSU5) were calibrated first, and the 
parameters in these subwatersheds were then held con-
stant while the lower nested subbasins were calibrated. 
This approach to calibration was the most reasonable 
option for relating model parameters to specific soil and 
landuse conditions in the study area. At the outlet of the 

 
 

 

catchment (NC3) the model was capable of capturing 
61% of the variance in calibration (1997-2001) and 37% 
in validation (2002-2004) using the NCE (Figure 3) . This 
is considered as ‘satisfactory simulation’ (Motovilov et al., 
1999). Results of model prediction performance at other 
subwatersheds are presented in Table 5. The improve-
ment in performance efficiencies of sub-watersheds 
FSU2, FSU7, and NC1 were partly associated to para-
meters of the upper subwatersheds at FSU1, FSU3, 
FSU4 and FSU5 and the nested subbasinsin between. In 
this case to get better simulation at downstream sub-
watersheds model parameters at the nested subbasins 
were fine tuned manually and better simulation at all 
subwatersheds and outlet of the catchment were 
obtained.  

Similar to unoptimized parameter setting, no marked 
difference was observed in prediction efficiencies 
between distributed and lumped modeling systems at the 
outlet of three tested watersheds (FSU2-L, NC1-L and 
NC3-L). The importance of distributed modeling was 
justified by using the optimised sets of parameters of a 
lumped model at NC3-L to each sub-watershed in distri-
buted modeling system. In this case poor prediction effi- 
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 Table 5. SWAT model optimized parameters and the prediction efficiency for the period 1997 -2004      
              

  FSU1 FSU2 FSU3 FSU4 FSU5 FSU7 NC1 NC3 FSU2-L NC1-L   NC3-L   

 CN2 75.44 77.5 80.13 68.4 75.94 78 78 78 71.447 86.775 91.025   

 CF 1.09 1.41 1.03 0.88 1.38 1.13 1.13 1 1.3 1.11 1.17   

 SURLAG 0.005 0.01 0.006 0.004 0.01 0.006 0.006 0.006 0.013 0.013 0.022   
 CF 0.00125 0.0025 0.0015 0.001 0.0025 0.0015 0.0015 0.0015 0.0033 0.0033 0.0055   

 RCHRG_DP 0.68 1 0.917 1 1 0.05 0.05 0.05 1 0.952 0.948   
 CF 13.6 20 18.34 20 20 1 1 1 20 19.04 18.96   

 SOL_K 22.64 10.2 2.42 7.114 9.88 0.8 0.65 0.8 10.965 14.65 4.29   
 CF 0.52 12.75 0.34 0.99 12.35 0.018 0.015 0.11 13.7 18.31 5.36   

 GWQMN 2938 0.18 1 1 1 1 1 1 1 152.19 4986   
 CF 2938 0.18 1 1 1 1 1 1 1 152.19 4986   

 Prediction Efficiency             

 Dv (%) 11.1 6.6 0.36 96.3 0.88 13 -2.9 -5.3 0 -0.11 16.3   

 Pe (R
2
) (%) 69.6 89 91.7 93.4 91.2 85 97.5 50 90.6 95 86.6   

 IVF (%) 89 93 99.6 96.3 99.1 87 103 105 100 100 84   

 NCE (%) 11 62.6 56.1 33 56.4 14 48 60.4 63.33 21.1 41   
               

 
CF is a correction factor introduced for future landuse change. 
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Figure 3- Observed and simulated streamflow hydrographs. 

 
 

 

ciencies were observed and flows were over- predicted 

as shown in Table 6 indicating loss of accurate prediction 

of hydrologic parameters in a lumped modeling approach. 

Using optimised parameter sets the timing of runoff 

 
 
 

 

events was well predicted and low flows were reasonably 

simulated as shown in Figures 3 and 5. However, in most 

simulation periods the hydrograph peaks were under-

estimated. This is partly attributable to the way that curve 
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Table 6. Prediction efficiency of lumped optimised parameter sets in a distributed  system for the period 1997 -2004.  

 
 FSU1 FSU2 FSU3 FSU4 FSU5 FSU7 NC1 NC3 FSU2-L NC1-L NC3-L 

 

Dv (%) 11.1 6.6 0.36 96.3 0.88 13 -2.9 -5.3 0 -0.11 16.3 
 

Pe (R
2
) (%) 69.6 89 91.7 93.4 91.2 85 97.5 50 90.6 95 86.6 

 

IVF (%) 89 93 99.6 96.3 99.1 87 103 105 100 100 84 
 

NCE (%) 11 62.6 56.1 33 56.4 14 48 60.4 63.33 21.1 41 
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Figure. 4- Daily 1-day FDCs at NC3 for the period 1997- 2004. 
 
 

 

number is updated based on changes in soil moisture 
(Van Liew et al., 2003). In SWAT, the curve number value 
is updated based on the available water content of the 
entire soil profile. However, it is probably more 
appropriate to update the curve number values in 
accordance with soil water content of the topmost soil 
layer, which could more closely reflect the process of 
surface saturation during heavy rainfall events (Kannan, 
et al., 2007). Simulation results indicated that 85% (664  
mm) of the annual water yield (773 mm) was contributed 
from the ground water flow indicating strong base flow 
component in the catchment  

The long term (1997-2004) simulation result (14.25 
cumecs) indicates reasonable water balance with the 
observed average annual flow (14.71cumecs). As shown 
in Figure 4 the daily 1-day flow duration curves (FDC) of 
the observed and simulated flow indicate reasonable 
prediction of middle flows. 

SWAT being a deterministic model, the parameters are 
constant with time for a catchment. However for catch-
ments experiencing high population pressure and subject 
to scarce-data condition like the case of Kihansi river 
catchment, it is important to introduce correction factors 
(CF) to optimize model parameters for correct hydro-
logical processes with time. The CF values presented in 
Table 5 are calculated as the ratio of optimized para- 

 
 
 

 

meter value (Table 5) to unoptimized parameter value 

(Table 4). Any future landuse change in the catchment 

should necessitate the use of the correction factors 

presented in Table 5. 
 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

The present study demonstrates hydrological model 
prediction efficiencies of a physically- based distributed 
and lumped hydrological systems using SWAT model. 
Model prediction efficiencies were found to be poor with 
the use of catchment characteristics. Parameter specifi-
cation and estimation were important to identify sensitive 
parameters ensuring correct representations of hydro-
logic processes. The prediction efficiency of the model is 
improved with increasing the spatial and temporal scale 
of the data used. A marked improvement in flow predic-
tion was observed in distributed modeling and correction 
factors were introduced for optimized parameters in 
future simulations involving land cover changes. Here it is 
recommended that the approach used in the present 
study need to be tested widely in bigger catchments to 
enable better understanding of the methodology and 
hydrological processes of catchments in data-scarce 
conditions for efficient management of environmental 
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Figure 5. Observed and simulated streamflow hydrographs at gauging stations located inside the catchment. 

 
 

 

changes. 
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