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This paper considers the flow of a conducting viscous incompressible fluid between two non-
conducting parallel discs, when the magnetic field was applied perpendicularly to the discs. The upper 
disc is in steady rotation, while the lower one is a stationary porous disc. The whole flow is divided into 
two regions: the free fluid region (between two parallel discs) and the porous region (this flow is of 
porous material). The approximate solutions are obtained by solving the Navier-Stokes equations in the 
free fluid region, and the Darcy’s equations in the porous region with suitable boundary conditions at 
the interface. The effects of rotation, Hartmann number and forced parameter have been considered on 
the flow characteristics and are illustrated by graphs. The flow is essentially dominated by rotational 
effect as well as by the forced parameter. 
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INTRODUCTION 

 
Flow of a viscous fluid through and past a porous medium 
has been the subject of intensive studies in recent years 
because of its many engineering and scientific 
applications. The study of viscous flow near stationary or 
rotating discs has significant relevance to many 
applications for industrial devices. Many important 
applications have motivated studies involving complex 
geometries, often with through flow and heat transfer, 
cooling of gas turbines, turbo machinery, boundary layer 
control, cooling of turbine blades, cooling the skins of 
high speed aircraft designs, in extraction process of fluid 
from the porous ground and in lubrication of porous 
bearings. Probably for the first time, the flow due to an 
infinite plane disk, rotating with constant angular velocity 
was discussed by Karman (1921). Cochran (1934) 
integrated numerically the equations obtained by Karman 
and compared his results with that of Karman. Batchelor  
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(1951) and Stewartson (1953) applied these equations to 
the problem of steady flow between two infinite parallel 
plane discs, rotating at a finite distance apart. The flow 
due to a rotating disk of infinite radius with uniform 
suction at the disc has been discussed by Stuart (1954) 
and he obtained numerical solutions for small values of 
suction and asymptotic solutions for large values of 
suction. Rizvi (1962) examined the magneto hydro-
dynamic flow over a single disk in the presence of weak 
magnetic field. The effects of an axial magnetic field on 
the flow about a rotating disk were studied by Kakutani 
(1962). Pande (1972) analysed a series solution for the 
effects of an axial magnetic field and suction (or injection) 
on the flow about an insulated rotating disk, when there is 
strong suction and a weak magnetic field. And Nath (1984) 
developed unsteady rotating flow over an infinite rotating 
disk with an applied magnetic field. Purohit and Bansal 
(1995) considered the flow of a viscous income-pressible 
electrically conducting fluid between a rotating and a 
stationary naturally permeable disk. Ariel (2002) 
discussed the numerical behavior of MHD flow near a 



 
 
 

 

rotating disk. Attia (2003) considered time varying rotating 
disk flow and heat transfer of a conducting fluid with 
suction or injection. Darcy (1937) initiated the theory of 
the flow through a porous medium. Joseph and Tao (1966) 
has analysed the coupled flow induced by the steady 
rotation of a naturally permeable disk saturated with fluid. 
The flow field is divided into two regions, namely (I) free 
fluid region, and (II) porous region, where the fluid flows 
through a porous medium. To link flows in the two 
regions, certain matching conditions are required 

  
  

 
 

 
directions of (r,  ,z) respectively. The slip conditions suggested by 
Beavers and Joseph (1965) have been applied to the radial and 
transverse velocity components at the interface (z = 0).  

The governing equations by Navier-Stokes equations for the 

steady magneto hydrodynamic flow in the free fluid region 0  z  h 
are: 
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at the interface of the two regions. This type of couple 
flows, with different geometries and with several kinds of 
matching conditions, has been examined by several 
authors. Khoo et al. (1998) discussed the flow between a 
rotating and a stationary disc. Steady flow between a 
rotating and a stationary naturally permeable disc had 
been studied by Verma and Bhatt (1975). Srivastava and 
Sharma (1992) studied the MHD flow and heat transfer of a 
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porous medium of finite thickness. Steady viscous flow 
between two rotating naturally permeable discs had been 
discussed by Chauhan and Gupta (1999). Srivastava 
(1999) studied the flow in a porous medium induced by 
torsional oscillation of a disk near its surface. The flow of 
viscous incompressible fluid confined between a rotating 
disk and a porous medium was analyzed by Chaudhary 
et al. (2004). Sharma et.al (2007) studied forced flow of a 
conducting viscous fluid through a porous medium 
induced by a rotating disk with applied magnetic field. 
Recently, Dufour and Soret effects on unsteady MHD 
convective heat and mass transfer flow due to a rotating 
disk, has been investigated by Maleque (2010).  

A few investigations have been reported in literature on 
the MHD flow of a viscous incompressible electrically 
conducting fluid between a rotating and a stationary 
naturally permeable disc. Hence, in the present analysis, 
it is proposed to study the flow of a conducting viscous 
incompressible fluid between two non-conducting parallel 
discs, when the magnetic field applied perpendicularly to 
the discs, is considered. The upper disc is in steady 
rotation while the lower one is a stationary porous disc. 
 

 
MATHEMATICAL FORMULATION 
 
We consider the motion of a viscous incompressible electrically 
conducting fluid confined between two parallel discs of infinite 
radius. They are placed at a distance h apart. The upper disc is 
rotating with uniform angular velocity , while the lower disc is 
stationary and made up of a porous material upto a depth z = - h 
with an impermeable surface at the bottom. The whole region (- h  

z  h) is divided into two regions namely free fluid region (0  z  h) 
and the region made up of porous material (- h  z  0). The 

cylindrical polar coordinates (r, , z) are being used with the origin 
at the centre of the lower disc and z-axis normal to the disc. A 

magnetic field of constant intensity B0 is applied perpendicular to 
 
the discs. The velocity components (u, v, w) in the free fluid region 
and (Up, Vp , Wp), in the porous region, are taken to be in the 

 
and the equation of continuity is: 
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The flow in porous region – h  z  0 is governed by the Darcy’s 
equations which are”  
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and the equation of continuity is:  
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where P1, P2 are the pressures in the free fluid and porous regions, 
respectively :  is the density;  is the coefficient of viscosity;  is 

the kinematic viscosity and K
*
 is the permeability of the porous 

medium. The corresponding boundary conditions are: 
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 is a constant depending upon the structure of porous material and 
a is a forced parameter. Following Batchelor (1951), we seek the 
solution of the equations (1) to (8) under the boundary conditions
(9), in the following form:
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primes denotes differentiation with respect to ‘’. The corresponding 
boundary conditions become: 
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The Reynolds number R which is defined in terms of the angular 

velocity of the disc, is assumed to be small. Since the solution for a 

given ratio of angular velocities of the two discs is not unique for 

sufficiently high Reynolds number, therefore, the unknown functions 
(11) can be expanded in ascending powers of R, in the following form: 
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On substituting equations (10) and (11) into the equations (1) to (8) 
of continuity and motion, we obtain the following set of equations, in 
non-dimensional form. In the free fluid region: 
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and in the porous region:         
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dimensionless permeability; m   a 
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Substituting equation (20) into equations to (12) to (18) and 
collecting the coefficients of the like powers of R, we obtain the 

following set of equations, in the free fluid region : R
0
 zeroth order 

term as: 
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Fig. 1. Radial velocity component F1( versus  for m = 0 
Figure 1. Radial velocity component F1() vs.  for m=0. 

 

 
and the equations in the porous region are 
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The corresponding boundary conditions are reduced to: 
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The solutions of the ordinary differential equations (21) to (27) are 
worked out subjected to the boundary conditions (28). We are not 
including solutions here for the sake of brevity of the paper. The 
important flow characteristics of the problem are further discussed. 
 

 

RESULTS AND DISCUSSION 

 

In the present paper, the forced flow of a viscous income-
pressible electrically conducting fluid between a rotating 

 
 

 

and a stationary naturally permeable disc, under the 
application of a magnetic field acting perpendicular to the 
discs has been investigated. The whole flow field is 
divided into two regions; (i) free fluid region, and (ii) 
porous region. The flow in the free fluid region is 
governed by Navier-Stokes equations in the presence of 
magnetic field, while the flow in porous region is 
governed by Darcy’s equations. The Reynolds number 
defined in terms of the angular velocities of the discs is 
assumed to be small. The effects of rotation, forced 
parameter and Hartmann number has been considered 
on the flow characteristics and illustrated by graphs.  

The flow field behavior in the free fluid region and in the 
porous region under the presence of an applied magnetic 

field has been considered. The radial velocity component F1 

(zero
th

 order term) versus distance  is shown in Figures 1 

and 2 for m = 0, 0.1 and other parameters respectively. An 
examination of Figure 1 shows that the radial velocity 

component F1 decreases in magnitude with the increase in 

 or Hartmann number M, whereas it increases by 

increasing . The magnitude of the radial velocity 

component F1 increases with increase in distance from 

lower disc, until it attains its maximum value, after which it 
decreases and it becomes zero at the upper disc. The radial 

velocity component F1 takes its maximum value near the 

upper disc. Figure 2 shows that the magnitude of the radial 

velocity component F1 decreases with the increasing  or M, 

where as it increases by increasing . It increases when we 
move from lower disc to upper disc and it takes its maximum 
value at the upper disc. Transverse velocity is shown in 
Figure 3. The transverse velocity increases with increase in 
Hartmann number M, where as it decreases if we move 
towards the 



  
 
 

 

 0.11        
 

 0.09 
M      

    
 

      
 

  1 1.45 0.2 I    
 

 
0.07 

3 1.45 0.2 II    
 

 1 1.45 0.4 III    
 

     
 

  1 4 0.4 IV    
 

 0.05        
 

      III  
IV 

 

        
 

F
1

 

0.03       I 
 

        II 
 

 0.01        
 

 -0.01 0 0.2  0.4 0.6 0.8 1 
 

         
 

Figure 2. Radial velocity component F1() vs.  for m=0.1.  
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versus  
 
lower disc from upper disc and it becomes zero at the 

lower porous disc. The axial velocity component H1 are 

drawn for different values of the parameters , , m and 
M in Figure 4. It is found that the axial velocity component 

H1 decreases in magnitude with the increase in  or M 

where as it increases by increasing  or m. The 

 
 

magnitude of the velocity component H1 increases with 

increase in distance in porous medium, until it attains its 
maximum value, after which it decreases and it becomes 

zero at upper disc. It is symmetrical about the axis  = 0 
(interface). As Reynolds number and forced parameter 
increase and Hartmann number decreases, more and 
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more fluid is thrown out in the neighborhood of the upper 
disc and radial and axial velocity increases with the 
increasing of Reynolds number and forced parameter and 
decreasing of Hartmann number. Thus, magnetic field 
has a sobering effect on velocity distribution. 
 

 

Stream functions of the flow 
 

The stream functions 1 and 2 for the free fluid region 

and porous region respectively are given by: 
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The streamlines are drawn in Figure 5, for R = 0.2,  = 

0.2 and  = 1.45. We find that the fluid is thrown radially 
outwards due to the centrifugal forces, hence to fill the 
gap, the fluid rushes from infinity towards the axis in the 
stationary lower porous disc and comes out of the porous 
region to keep the continuity, consequently, as 

 
 

 

compensation, the fluid is pumped out from the lower 
disc to maintain the flow. By introducing the forced flow, it 
is observed that the flux thrown radially outwards is more. 

As might be expected there is symmetry about the axis  
= 0. 
 

 

Skin-friction and torque on both disks 

 

The coefficients of skin-friction are given by: 
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F ' ( 0) and F ' (1) versus R , for  =1.45 
 

stress on the lower disc and r0 is a certain distance in the 

radial direction from the centre of the disc.  
Figure 6 shows the variations of coefficients of skin-

friction. It is noted that the coefficient of skin-friction at the 
upper disc increases in magnitude with increase in R and 
decreases with increasing m or M. It increases with 

increasing  at the upper disc but it decreases with 

increasing  or R or M at the lower disc. 

 
 
Conclusion 

 

In this paper, the forced flow of a viscous incompressible 
electrically conducting fluid between a rotating and a 
stationary naturally permeable disc, under the application 
of a magnetic field acting perpendicular to the discs is 
studied. The following conclusions can be drawn as a 
result of the computations: 



 
 
 

 

i. The flow is essentially dominated by rotational effect 
and as well as by the forced parameter.  
ii. The radial velocity component F1 decreases with the 
increasing  or M.  
iii. The transverse velocity increases with increase in 
Hartmann number M.  
iv. Axial velocity increases with the increasing of 
Reynolds number and forced parameter. 

 

Nomenclatures: B0, Uniform magnetic field; K*, 

permeability parameter; M, magnetic field parameter 
(Hartmann number); R, rotational Reynold number; m, 

dimensionless forced parameter; , kinematic viscosity; , 

viscosity; , skin-friction (shearing stress); , scalar 

electrical conductivity; 1, 2, stream unctions; Cf, 

coefficient of skin-friction; , density of the fluid; P1, P2, 

pressures in the free fluid and porous regions 
respectively;  , a constant of structure porous material; 
h, distance; u, v, w, velocity components in the free fluid 

region in the r, , z directions; UP, V P, WP, velocity 

components in the porous region in the r, , z-directions; 
r, , z, cylindrical polar coordinates; , uniform angular 

velocity; , non-dimensional permeability parameter; , 
similar distance variable; a, forced parameter. 
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