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Toxicity of Zn

2+
 on four planktonic bacteria isolated from New Calabar River water was assessed via dehydrogenase 

assay. Pure cultures of the bacterial strains were exposed to various Zn
2+

 concentrations (0.2 - 2.0 mM) in a nutrient 
broth amended with glucose and TTC. The responses of the bacterial strains to Zn

2+
 is concentration- dependent. At 

0.2 mM, Zn
2+

 stimulated dehydrogenase activity in Proteus sp. PLK2 and Micrococcus sp. PLK4. In all strains, 
dehydrogenase activity was progressively inhibited at concentrations greater than 0.2 mM. The IC50 ranges from 
0.236  0.044 to 0.864  0.138 mM. Total inhibition occurred at concentrations ranging from 1.283  0.068 to 2.469  
0.045 mM. The order of zinc tolerance is: Micrococcus sp. PLK4 > Proteus sp. PLK2 > Pseudomonas sp. PLK5 > 
Escherichia sp. PLK1. The result of the in vitro study indicated that the bacterial strains are sensitive to Zn

2+
 stress. 

Therefore, Zn
2+

contamination would pose serious threat to their metabolism in natural environments. 
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INTRODUCTION 

 
Heavy metals have great ecological significance due to 
their toxicity and accumulative behaviour (Purves, 1985). 
Unlike organic pollutants, heavy metals are not 
biodegradable and undergo a global eco-biological cycle 
(Nürnberg, 1984) in which natural waters are the major 
pathways. Anthropogenic activities have resulted in the 
increased levels of trace metals in many aquatic 
environments. Heavy metals discharged into estuarine 
and coastal waters rapidly become associated with 
particulates and are incorporated in bottom sediments 
(Hanson et al., 1993). Diagenetic processes and physical 
disturbances in the sediments can cause spatial 
translocation of these contaminants between the 
sediment and the water phases and disturb the activity of 
the planktonic microorganisms.  

Microorganisms are vital for the efficient functioning of 
any ecosystem, thus, factors that affect their metabolism, 
distribution, and abundance are of great concern. 
Microbes respond quickly to environmental pollution and 
monitoring microbial responses has been recommended  
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as an early warning indicator of ecosystem stress 
(Griffiths, 1983; Odum, 1985). Measurement of microbial 
enzyme activity is used in the assessment of 
ecotoxicological impacts of environmental pollutants. The 
most often studied groups of enzyme are 
oxidoreductases e.g. dehydrogenases. Dehydrogenase 
assay involving the reduction of 2,3,5-triphenyltetrazolium  
chloride (TTC) and 2-( p-iodophenyl)-5-
phenyltetrazoliumchloride (INT) to their formazans has 
been used to measure microbial activity (Gong, 1997; 
Mathew and Obbard, 2001) and to assess the toxicity of 
heavy metals (Aoyama and Nagumo, 1997; Kelly and 
Tate, 1998) and polyaromatic hydrocarbons (Klimkowicz-  
Pawlas and Maliszewska-Kordybach, 2003; Maliszewska-
Kordybach and Smreczak, 2003).  

The organic and inorganic pollution of New Calabar 
River has been attributed to the effluent discharges from 
industries sited along its bank (Okpokwasili and 
Odokuma, 1993; Odokuma and Okpokwasili, 1997; 
Odokuma and Ijeomah, 2003a). The heavy metal content, 
seasonal variations in the population of heavy metal 
resistant bacteria as well as toxicity and accumulation of 
heavy metals by bacteria isolated from the New Calabar 
River have been reported (Horsfall and Spiff, 2002; 



 
 
 

 

Odokuma and Abah, 2003; Odokuma and Ijeomah, 
2003a,b). However, these studies did not consider the 
inhibition of dehydrogenase enzyme activity in these 
bacteria. This study was aimed at assessing the in vitro 

effects of zinc on the dehydrogenase activity of bacterial 
species isolated from New Calabar River water. 
 

 
MATERIALS AND METHODS 
 
Sample collection and analysis 
 
The New Calabar River is a short tidal coastal river of about 150-
200 km in length and flow through Port Harcourt, Rivers State in the 
Niger delta region of Nigeria. The water is brackish and impacted by 
effluent discharges from industries sited along its bank. Water 
samples were collected midstream along the course of the river at 
Choba from a depth of 30 cm. The sampling site has been 
described by Odokuma and Ijeomah (2003b). The samples were 
collected in 1litre sterile glass bottles. Samples were stored in a 
cooler and taken to laboratory. All samples were analyzed within 6 
h of collection. The pH and zinc content of the sample were 
determined using pH meter (Jenway 3015) and atomic absorption 
spectrophotometer (Perkins Elmer 3110), respectively. 

 

Isolation of bacterial strains and culture conditions 
 
Aerobic heterotrophic bacteria in the samples were isolated and 
purified on nutrient agar plates. Purified cultures were characterized 
biochemically using standard microbiological methods and identified 
to the generic level following the schemes of Holt et al. (1994). 
 

The bacterial strains were grown to mid exponential phase in 
nutrient broth (Lab M) on a rotary incubator (150 rpm) at room 

temperature (28  2C) and the cells harvested by centrifugation at 
1000 g for 10 min. Harvested cells were washed twice in deionized 
distilled water to avoid any nutrient carryover. Washed cells were 
re-suspended in deionized distilled water and the turbidity adjusted 
to give an optical density of 0.85 at 420 nm. The cell suspensions 
were used as inoculum in the dehydrogenase activity assay. The 
dry weight of cells was determined by drying a 10 ml aliquot of cell 
suspensions (contained in pre-weighted crucibles) to constant 

weight in an oven at 110C. 
 

 
Dehydrogenase assay 
 
Dehydrogenase activity was determined using 2,3,5-
triphenyltetrazolium chloride as the artificial electron acceptor, 
which is reduced to the red-coloured triphenylformazan (TPF). The 
assay was done in 3-ml volume of nutrient broth- glucose- TTC 

medium supplemented with varying concentrations of Zn
2+

 as zinc 
sulphate in separate screw-capped test tubes. Portions (0.3 ml) of 
the bacterial suspensions were inoculated into triplicate glass tubes 
containing 2.5 ml of phthalate-buffered (pH 6) nutrient broth-glucose 

medium amended with Zn
2+

 and preincubated on a rotary incubator 

(150 rpm) at room temperature (28  2C) for 30 min. Thereafter, 
0.2 ml of 0.4% (w/v) TTC in deionized distilled water was added to 

each tube to obtain final Zn
2+

 concentrations of 0.2, 0.4, 0.6, 0.8, 
1.0, 1.2, 1.5 and 2.0 mM in different test tubes. The final 
concentrations of nutrient broth, glucose and TTC in the medium 
were 2, 2 and 0.267 mg/ml, respectively. The controls consisted of 

the isolates and the media without Zn
2+

. The reaction mixtures were 

further incubated under static conditions at room temperature (28  
2C) for 4 h. The TPF produced was extracted in 

 
 
 
 

 
4 ml of amyl alcohol and determined spectrophotometrically at 445 
nm ( max). The amount of formazan produced was determined 
from a standard dose-response curve [0-200 mg/l TPF (Sigma) in 

amyl alcohol; R
2
 = 0.9955]. Dehydrogenase activity was expressed 

as milligrams of TPF formed per mg dry weight of cell biomass per 
hour.  

Zinc inhibition of dehydrogenase activity was calculated relative 
to the control. Inhibition data (percent inhibition) were linearized 
against the concentrations of toxicant using gamma parameter ( ) 
as shown in the equation below (Kim et al., 1994). The IC50, which 
is an inhibitory concentration of toxicant required to reduce 50% of 
the dehydrogenase activity, was determined. The total inhibition 
concentrations were estimated from the linear regressions of log 
transformation plots of the dose-response data. 
 

%Inhibition 
=  

100 - %Inhibition 

 

Statistical analysis 
 
Data generated from this study were subjected to multiple factor 

analysis of variance (2-Way ANOVA). 
 
 
Table 1. Dehydrogenase activities in the control tests. 
 

Strain Dehydrogenase activity
a
 

 (mg Formazan/mg cell dry wt/h) 
  

Escherichia sp. PLK1 0.935  0.062 

Proteus sp. PLK2 0.161  0.050 

Micrococcus sp. PLK4 0.033  0.004 

Pseudomonas sp. PLK5 0.256  0.024 
  
 
a
Data represent mean  standard deviation of triplicate tests. 

 

 

RESULTS AND DISCUSSION 

 

The zinc content and pH of the New Calabar River water 

were 5 mg/l (76.48 M ) and 6.4 respectively. This level 
of zinc is much higher than the previously reported levels 
of 0.01 to 0.71 mg/l (Odokuma and Abah, 2003; 
Odokuma and Ijeomah, 2003a,b), indicating that zinc was 
accumulating in the New Calabar River over time. Typical 
background level of zinc in freshwater and seawater  
systems are 0.30 and 0.153 M respectively (Goldman 
and Horne, 1983; Leppard, 1981; Bidwell and Spotte, 
1985). It is therefore obvious that the concentration of 
zinc in the river was elevated.  

Four bacterial strains comprising three Gram negative 
(Escherichia sp. PLK1, Proteus sp. PLK2, and 
Pseudomonas sp. PLK5) and one Gram positive 
(Micrococcus sp. PLK4) organisms were isolated. Results 

obtained from the control samples showed that these 
organisms were able to reduce TTC to the red formazan 
at variable rates and extent (Table 1). The Gram negative 
bacteria had higher rates of dehydrogenase activity than 
the Gram positive 
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Figure 1. TTC reduction activity in response to various concentrations of zinc by Escherichia sp.  
PLK 1, Proteus sp. PLK 2, Micrococcus sp. PLK 4 and Pseudomonas sp. PLK 5. Means  
Standard deviation (n=3) are indicated by bars. Some standard deviations are within data points. 
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Figure 2. Zinc inhibition of dehydrogenase activity in Escherichia sp. PLK 1, Proteus 

sp. PLK 2, Micrococcus sp. PLK 4 and Pseudomonas sp. PLK 5. Means  Standard 

deviation (n=3) are indicated by bars. 
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Figure 3. Correlation of Zn
2+

 concentrations with dehydrogenase activity (DHA) in 
response to zinc by Escherichia sp. PLK 1 (a), Proteus sp. PLK 2 (b), Micrococcus sp. PLK 
4 (c) and Pseudomonas sp. PLK 5 (d). The data points represent mean (n=3) activity. 

 

 

Micrococcus sp. PLK4. This variation may be due to 
differences in cell wall components or dehydrogenase 
systems, since different microorganisms have been 
reported to have different dehydrogenase systems 
(Praveen-Kumar, 2003). The rate of dehydrogenase 
activity is in the order: Escherichia sp. PLK1 > 
Pseudomonas sp. PLK5 > Proteus sp. PLK2 > 
Micrococcus sp. PLK4.  

The effects of the different concentrations of Zn
2+

 on 
the bacterial isolates with respect to the dehydrogenase 
activity and its inhibition are shown in Figures 1 and 2. 
The responses of the bacterial dehydrogenase activities 

to Zn
2+

 is concentration-dependent and vary among the 
organisms. For Escherichia sp. PLK1 and Pseudomonas 
sp. PLK5, dehydrogenase activity reduced with 

increasing concentrations of Zn
2+

 (Figure 1). On the 
contrary, for Proteus sp. PLK2 and Micrococcus sp. 
PLK4, dehydrogenase activities were stimulated at 0.2 

mM Zn
2+

 and thereafter progressive inhibition was also 
observed at concentrations above 0.2 mM. The tolerance 
of Proteus sp. PLK2 and Micrococcus sp. PLK4 observed 

at lower Zn
2+

 is attributable to the use of zinc as trace 
element by these bacteria. The inhibition of dehydroge-
nase activities observed in this study is consistent with 
the reported toxic effects of zinc at high concentrations (Ji 
and Silver, 1995). Although zinc is an essential trace 

 
 

 

element and plays an important role in the development, 
growth and differentiation of all living systems 
(Ohnesorge and Wilhelm, 1991), it is known to be a 
potent inhibitor of the respiratory electron transport 
system (Kasahara and Anraku, 1974; Beard et al., 1995). 

Results presented in Figure 2 showed that at lower Zn
2+

 

concentrations ( 0.4 mM), Escherichia sp. PLK1 had 
higher percentage inhibition than other organisms. This 
implies that Escherichia sp. PLK1 was more sensitive to 

Zn
2+

 stress than the other bacterial strains studied. 

Comparatively, at higher concentrations ( 0.6 mM), 

Micrococcus sp. PLK4 was more tolerant to the Zn
2+

 than 
the other bacteria. Different sensitivities of microbes to 
zinc concentrations could be related to the genetic make 
up of the organism.  

The dehydrogenase activity (DHA) correlated with Zn
2+

 

concentration with R
2
 values greater than 0.94 (0.9408  R

2
 

 0.9968) in all the bacterial strains (Figure 3). The 

relationships between the dehydrogenase activity and Zn
2+

 

concentration are given as, Log10 DHA = -0.983 Zn
2+

 (mM) 

– 0.099, Log10 DHA = - 1.231 Zn
2+

 (mM) – 0.450, Log10 

DHA = -0.538 Zn
2+

 (mM) – 1397 and Log10 DHA = - 1.236 

Zn
2+

 (mM) – 0.575 for Escherichia sp. PLK1, Proteus sp. 
PLK2 Micrococcus sp. PLK4 and Pseudomo-nas sp. PLK5, 

respectively. The high R
2
 values (> 0.94) observed with all 

the bacterial strains indicated that zinc 
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Figure 4. Linear regression of the gamma parameter ( ) values obtained from the 
mean inhibition data of zinc against Escherichia sp. PLK 1 (a), Proteus sp. PLK 2 (b), 

Micrococcus sp. PLK 4 (c) and Pseudomonas sp. PLK 5 (d). IC50 was calculated 
from the linear curves at = 1. 

 

 
Table 2. Median and total inhibitory concentrations of zinc against 

the bacterial strains. 
 

Bacteria Inhibitory concentrations (mM)
a
 

 IC50 IC100 
   

Escherichia sp. PLK1 0.236  0.044 1.558  0.037 

Proteus sp. PLK2 0.529  0.007 1.283  0.068 

Micrococcus sp. PLK4 0.864  0.138 2.469  0.045 

Pseudomonas sp. PLK5 0.301  0.024 1.328  0.094 
     
a
 Data represent mean  standard deviation of triplicate estimates.

 

 
 

 

concentration was a strong determinant of the 
dehydrogenase activity. This indicated that increase in 

the concentration of Zn
2+

 will seriously affect carbon 
metabolism and respiratory activities in these bacterial 
strains.  

The gamma parameter gave good linearization of the 

dose-response data with the R
2
 values greater than 0.97 

(0.9753  R
2
  0.9850) in all the bacterial strains (Figure 

4). Similar plots (not shown) with  1 standard deviations 

 

 

of the values gave R
2
 values greater than 0.95 (0.9572 

 R 
2
  0.9903) in all the bacterial strains. Table 2 shows 

the IC50 of Zn
2+

 estimated from the gamma parameter 

plot at = 1 and the IC100 of Zn
2+

 estimated from the 
logarithmic transformation of the inhibition data (plots not 
shown) for the various isolates. Escherichia sp. PLK1 

having the least IC50 of 0.236 mM was the most sensitive 

to Zn
2+

 while Micrococcus sp. PLK4 having the highest 

IC50 of 0.864 was most tolerant. A 50% effective 
concentration (EC50) of zinc on the microcosm sediment 
communities has been reported as 0.92 and 1.53 mM 
using acetate incorporation and glucosidase activity 
assays, respectively ( Barnhart and Vestal, 1983). A 
much lower EC50 (0.05 mM) was reported for a natural 
microbial community in compost using acetate incorpo-
ration (Barnhart and Vestal, 1983). The differences could 
be attributed to the method of analysis, zinc salt used, 
growth medium or microbial species.  

Tolerance of zinc (as ZnSO4) have been studied in two 
zinc-solubilizing bacteria, Bacillus sp. ZSB-O-1 and 
Pseudomonas sp. ZSB-S-2. The tolerance limits for these  
bacteria was determined to be up to 100 mg/l ( 1.53 

mM) of Zn
2+

 in an in vitro broth asssay (Vankatakrishnan 
et al., 2003). Total inhibition of nitrification process at 1.2 



 
 
 

 

mg/l ( 0.02 mM) was reported for an autotrophic 
biomass in an activated sludge (Juliastuti et al., 2003). 
Higher zinc tolerance have been reported in Escherichia 
coli and Pseudomonas aeruginosa. A 10 mM 
concentration did not significantly affect the survival of P. 
aeruginosa but decreased the survival of E.coli (Babich 
and Stotzky, 1978). Minimum inhibitory concentrations 
(MICs) as large as 24 and 48 mM was previously 
reported for P. aeruginosa isolated from natural waters 
(de Vincente et al., 1990). A 5 h minimum bactericidal 
concentration of zinc greater than 64 mM have been 
reported for planktonic and biofilm P. aeruginosa (Teitzel 
and Parsek, 2003). MIC of 1 mM was reported by 
Mergeay et al. (1985) for E. coli. The high tolerance of 
zinc observed in these reports could be attributed to zinc 
resistance in the bacterial strains. The bacterial strains of 
the New Calabar River seem to have normal sensitivity 
with variable inhibition at low concentrations and almost 
total inhibition at concentrations ranging from 1.2 to 2.0 

mM Zn
2+

. The 2-way ANOVA showed that the 

dehydrogenase activity varied significantly (p < 0.01) with 
bacteria type and the concentrations of zinc.  

The result of the in vitro study indicated that Zn
2+

 is 

potentially toxic to the bacterial strains of New Calaber 

River. Contamination and accumulation of Zn
2+

 in the 

river would therefore pose serious threat to the metabolic 
activities of the individual bacterial strain. However, the 
result does not indicate the response of the complex 
microbial community of the river to toxicity of zinc. 
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