
Advanced Journal of Microbiology Research Volume 2014 
Available online at http://advancedresearchjournals.org/AJMR 
© Advanced Research Journals 
 
 

 

Full Length Research Paper 
 

A suitable model of microbial growth 
 

Sencer Buzrul 
 

Tütün ve Alkol Piyasası Düzenleme Kurumu (TAPDK), 06520 Ankara, Turkey. E-mail: sencer.buzrul@tapdk.gov.tr,  
sencer.buzrul@gmail.com. Tel.: +90- 3122180438. Fax: +90-3122180430. 

 
Accepted 27 July, 2013 

 
A microbial growth model with three interpretable parameters was introduced in this study. This model, 
which was only applicable up to the early stationary phase of the microbial growth, was used to 
describe the published isothermal growth curves of Listeria monocytogenes in milk at 1.5 - 16°C and 
temperature dependence of its parameters was fitted by ad hoc empirical secondary models. Published 
isothermal growth curves of Pseudomonas spp. in poultry at 2 - 20°C were also fitted with this model 
but in this case one of the parameters in this model was fixed to reduce the number of parameters. This 
reduced model produced almost the same goodness-of- fit as the full model. Although more studies 
should be carried out to evaluate the applicability of the proposed model under dynamic temperature 
conditions, this study has shown that microbial growth data -up to early stationary phase- could be 
successfully described by this model. 
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INTRODUCTION 
 
Modeling the microbial growth in food is a basic tool for 
the prediction of food safety and shelf-life in the food 
chain (McMeekin et al., 1993) and throughout the years 
numerous growth models have been published. In ge-
neral, the growth of a homogeneous microbial population 
can be described by a curve with three phases if the 
death phase is excluded: a lag phase (adaptation period 
of microbial cells to their new environment) followed by 
an exponential growth phase (multiplication of cells 
exponentially) and finally a stationary phase (reaching to 
the maximum population density) (Isabelle et al., 2006).  

The continuous logistic equation proposed by Verhulst 
(1838) has been a most illustrative model of organism’s 
growth dynamics in a habitat of finite sources. One can 
find the improved versions of the logistic model in 
literature (Fujikawa et al., 2004). Gompertz model 
[originally proposed by Gompertz (1825)] and its modified 
versions (Zwietering et al., 1990; Smith and Schaffner, 
2004) were widely used to describe the sigmoid growth 
curves. The Baranyi and Roberts model (1994), which 
was derived from the logistic function, is also one of the 
widely used models to describe isothermal and non-
isothermal growth curves of microorganisms today. There 
are also some other, recently proposed, growth models 
(Van Impe et al., 2005; Poschet et al., 2005).  

While all the mentioned models whether in their original 

 
or modified forms can be used to fit isothermal growth 
data, none of them can be considered as unique. 
Moreover, “as many sigmoid growth curves can be 
described by mathematical expressions having only three 
adjustable parameters, the fit of above models (since 
they have at least four adjustable parameters; depending 
on how you define the terms) should not come as a 
surprise” (Corradini and Peleg, 2005). The aim of this 
study was to introduce a new empirical equation with 
clearly interpretable parameters to be used to describe 
isothermal microbial growth. 
 
 
MATERIALS AND METHODS 
 
Theory 
 
Equation (1) is proposed to describe the microbial growth in 
different media. This equation was used to describe the plant 

growth by Yin et al. (2003). In that study the mathematical 
derivation of Equation (1) from a differential form was also shown.  
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Figure 1. Demonstration of Equation (1) and its interpretable parameters (A, tA, tm) to describe the growth curve up to early stationary 

phase (bold lines). Dotted lines indicate the continuation of the Equation (1) after tA. Adapted from Ref. (12). 
 

 
Where N(t) and N0 are the momentary and initial number of the 
population, respectively. A is the asymptotic value which is reached 
at time t A and t m is the time at which maximum growth rate is 
achieved (Figure 1).  

According to this model, when t = 0, log10 [N(t)/N0] = 0 that is, 
N(t)= N0. It is also very easy to estimate the initial values of the 
parameters of Equation (1) for nonlinear regression just by looking 
at the raw data; however, Equation (1) can only be used for growth 
curves up to early stationary phase because Equation (1) still 
produces unimodal curve if tA is exceeded (Figure 1). Nevertheless, 
this will suffice as there is often little interest in modeling the 
stationary phase (McKellar and Lu, 2004). 

 
Application of the model to published data on the isothermal 

growth of Listeria monocytogenes in milk and Pseudomonas 

spp. in poultry. 
 
The growth data found in literature (Xanthiakos et al., 2006 and 
Gospavic et al., 2008 respectively) were scanned and digitized 
using a software program WinDIG 2.5 (written by Mr. Dominique 
Lovy, Geneva, Switzerland). The original data were in the form of 
log10N (t) versus time, were converted into log10 [N (t)/N0] versus 

 

 
time. Then, these were subjected to nonlinear regression using 
Equation (1). Both regression and plotting of the results were 
carried out with SigmaPlot 2000 Version 6.00 (Chicago, IL, USA). 

The goodness-of-fit of the model was assessed using adjusted de-

termination coefficient (R
2

adj) and mean square error (MSE) values. 

 
RESULTS AND DISCUSSION 
 
Published isothermal growth data of L. monocytogenes in 
milk at 1.5, 4, 8, 12 and 16°C (Xanthiakos et al., 2006) 
fitted with Equation (1) as a model is shown in Figure 2. 

R
2
adj and MSE values given in Table 1 indicated that 

Equation (1) produced reasonable fits for L. 
monocytogenes in milk at various temperatures. 
Admittedly, Equation (1) did not produce good fits for the 
published literature growth data that had long stationary 
phase period (Figure 1) – results not shown.  

Temperature dependence of parameters of Equation 

(1) was described by ad hoc empirical secondary models 



    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Published isothermal growth data of L. monocytogenes in milk at 1.5°C (closed circle), 4°C (open circle), 

8°C (reversed closed triangle), 12°C (reversed open triangle) and 16°C (closed square) fitted with Equation (1) (solid 

lines). Original data are from Ref. (14). 
 

 
Table 1. Goodness-of-fit of Equation (1) for published isothermal 

growth data of L. monocytogenes (Ref. 14) in milk at 1.5, 4, 8, 12 

and 16 °C.  
 

 T (°C)  Equation (1)  

  R
2
adj

a
 MSE

b
  

 1.5 0.988 0.03  

 4 0.989 0.03  

 8 0.988 0.03  

 12 0.983 0.05  
 16 0.990 0.04  

 
a
 Adjusted regression coefficient; 

b
 mean square error.

 

 

 
(Figure 3): A is linearly increasing with temperature while 

the temperature dependency of tA and tm could be 
successfully described by exponential decay function.  

Solid lines in Figure 4 indicates that published 
isothermal growth data of Pseudomonas spp. in poultry at 
2, 4, 10, 15 and 20°C (Gospavic et al., 2008) were fitted 
with Equation (1). Since the parameter A does not depend 
on temperature for Pseudomonas spp. (Figure 5) this pa-
rameter was fixed (Equation (2) ) and the re-gression was 

repeated with two adjustable parameters ( tA and tm). 
Dashed lines in Figure 4 indicated that data were fitted 

with Equation (1) with fixed A value (Afixed = 5.89) that is, 

 

 
Equation (2):  
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Table 2 shows the R
2
adj and MSE values for both full 

[Equation (1)] and reduced [Equation (2)] models. It is  
clear that reduced model produced almost the same fit 
and goodness- of-fit was as good as the full model. It 
should also be noted that since the number of data in 
each kinetic was not equal, each kinetic have not the  
same weight on Afixed evaluation. Therefore, Afixed value 
was evaluated by estimating the process on the whole set  
of data (Couvert et al., 2005). 

Whether it is survival or growth modeling, it may be 
possible to reduce the number of parameters of model by 
using fixed value of one or two parameters of the original 
model with a slight loss of goodness-of-fit. The concept is 
not new; for example, in literature it is possible to find the 
usage of the fixed shape parameter of the Weibull model 
(Couvert et al., 2005; Corradini et al., 2005; Buzrul, 2007; 
Fernández et al., 2007). Recently, Avsaroglu et al. (2007) 
and Buzrul et al. (2007) reduced the parameters (from 
four to two) of empirical models for the hypochlorite and 
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Figure 3. Temperature dependence (secondary modeling) of the parameters (a) A; (b) t A and (c) tm obtained from 

the fitting of Equation (1) for L. monocytogenes. Error bars represent standard error values. 



     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Published isothermal growth data of Pseudomonas spp. in poultry at 2°C (closed circle), 4°C (open circle), 

10°C (reversed closed triangle), 15°C (reversed open triangle) and 20 °C (closed square) fitted with Equation (1) (solid 

lines) and with Equation (2) (dashed lines). Original data are from Ref. (15)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The parameter A ± standard error values obtained from the fitting of Equation (1) for published isothermal growth data of 

Pseudomonas spp. in poultry. Dashed line indicates the fixed value of the parameter A (Afixed = 5.89) to be used for Equation (2). 



 
 
 
 

Table 2. Goodness-of-fit of the full [Equation (1)] and the reduced [Equation (2)] 

models for published isothermal growth data of Pseudomonas spp. (Ref. 15) in 

poultry at 2, 4, 10, 15 and 20 °C. 
 

 T (°C) R2 adj
a
 MSE

b
 

  Equation (1) Equation (2) Equation (1) Equation (2) 

 2 0.977 0.979 0.13 0.11 
 4 0.981 0.983 0.10 0.09 
 10 0.978 0.980 0.12 0.11 
 15 0.976 0.979 0.13 0.11 
 20 0.997 0.989 0.01 0.04 

 
a
 Adjusted regression coefficient; 

b
 mean square error.
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Figure 6. Temperature dependence (secondary modeling) of the parameters (a) tA and (b) tm obtained from the fitting of Equation (2) for 

Pseudomonas spp. Error bars represent standard error values. 
 

 
isopropanol inactivation of lactococcal bacteriophages, 
respectively. Corradini and Peleg (2005) also fixed 
asymptotic value (just as in this study) of the modified 
logistic equation.  

Fixing the parameter A increased the robustness of the 
model since the standard errors or confidence intervals of 

the adjustable parameters (tA and tm) are lowered when 
compared with the full model – results not shown. There-
fore, fixing one or more parameters in a model (and then 
repeating the regression with the fixed parameters) would 
be useful when warranted by the results. 

Secondary models for tA and tm are shown in Figure 6. 

 

 
The same equations (exponential decay) could be used 

and once again reasonable fits could be obtained. 
Nevertheless it should be noted that secondary model 
descriptions should be limited to the experimental ranges.  

In principle, it may be possible to use the proposed 
model to describe the isothermal growth data of micro-
organisms. The model presented here has three meaning-
ful parameters but in some cases parameters could be 
reduced from three to two. It should also be noted that this 
model is only applicable up to early stationary phase. 
More studies should be done to check the applicability of 
the proposed model under dynamic temperature conditions 
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