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The role of Ca
2+

 and reactive oxygen species in the defense responses of callus cultures of rice (Oryza 
sativa L., cv. Zenith) to infection with avirulent strain of rice blast fungus (Magnaporthe grisea, strain 
Ina168) was investigated. It was observed that rice calli, especially after mild blast infection, exude 
substances (diffusate) that inhibit spore germination of the avirulent blast fungus. This fungitoxic calli 
diffusate led to superoxide dismutase-sensitive reduction of Nitro-blue-tetrazolium. Treatment of rice 
calli with crude elicitor from the blast fungus also led to hypersensitive necrotic response. Addition of 
antioxidant reagents diminishes the necrotic response of calli to the elictor treatment, implicating the 
involvement of reactive oxygen species in the hypersensitive necrotic response. When 

ethyleneglycoltetraacetic acid (Ca
2+

 chelator) or LaCl3 (Ca 
2+

channel blocker) was added, the necrotic 

response of calli to elicitor treatment was also significantly weakened, implying the involvement of Ca
2+

 

in the defense response. 
 

Key words: Oryza sativa, Magnaporthe grisea, hypersensitive response, reactive oxygen species, calcium. 
 
 
INTRODUCTION 

 
Plant defense responses against pathogens involve the 
recognition of invading pathogens and activation of signal 

transduction pathways leading to hypersensitive reaction 
(Mehdy et al., 1994; Hammond-Kosack and Jones, 1996; 
Somssich and Kahlbrock, 1998; Richter and Roland, 

2000). Hypersensitive reaction (HR) in plants is generally 
characterized by a rapid, localized cell death around the 

infection site and the accumulation of antimicrobial 
agents (Hammond-Kosack and Jones, 1996; Richter and 
Roland, 2000). In the rice-blast disease system, it has  
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been demonstrated (Aver’yanov et al., 1988) that leaves 
of resistant, but not susceptible rice varieties, respond to 
blast attack by excreting substances that are toxic to the 
invading blast fungus. There is now a growing interest in 
elucidating the mechanisms by which plant cells invoke 
these defense responses against pathogens.  

Several literature reports suggest that calcium ions (Ca
2+

) 

participate in the induction of defense response in plants 

(Chen et al., 1993; Lamb et al., 1994; Lock et al., 1994; 

Mehdy, 1994; Ward et al., 1995; Dmitriev et al., 1996; Levine 

et al., 1996; Ishihara et al., 1996; Zimmermann et al., 1997; 

Allen et al., 2000; Blume et al., 2000; Romeis et al., 2001). 

Recently, Lecourieux and colleagues (2002) observed rapid 

increase in cytosolic free calcium levels in cells of Nicotiana 

plumbaginifolia in response to treatment with elicitors. Such 

stress-induced elevation of cytosolic calcium levels has been 

linked to the opening of calcium channels and influx of 

calcium into the cytosol (Engstrom et al., 2002). The 

interesting aspect 



 
 
 

 

of the influx of extracellular calcium in response to 

pathogen attack is that such an influx could lead to 

oxidative burst in plant cells (Blume et al., 2000).  
Oxidative burst is part of the downstream defense 

responses in plant cells, which involves the large and 
rapid generation of reactive oxygen species (superoxide, 
hydrogen peroxide, hydroxyl, peroxyl and alkoxyl 
radicals) that can cause cell damage. The literature is rich 
with information on the role of oxidative burst in plant 
defense responses (Doke, 1983; Doke and Chai, 1985; 
Lamb et al., 1989; Levine et al., 1994; Goodman, 1994; 
Low and Merida, 1996; Tzeng and DeVay, 1996; 
Wojtaszek, 1997; Vanacker et al., 2000; Park et al., 
2000). The fungitoxic excretions in leaves of blast-
resistant rice varieties have also been associated with 
reactive oxygen species (Aver'yanov et al., 1987). The 
key component of the oxidative burst is hydrogen 
peroxide, which in the presence of a metal reductant, can 
form the highly reactive oxygen radical, hydroxyl radical 
(Mehdy, 1994). The role of hydrogen peroxide in defense 
response of plants to external stress factors has recently 
been demonstrated in cells of Betula pendula (Pellinen et 
al., 2002). 

Plant cell cultures have been extensively used to 
investigate defense signal transduction in several plant 
species, but not much work has been carried out with rice 
callus cultures in this regard. The present study reports 
the role of calcium ions and reactive oxygen species in 
the defense responses of callus culture of rice to blast 
disease. Studies on the involvement of oxidative 
enzymes in blast disease resistance response are also 
included. 
 
 
MATERIALS AND METHODS 
 
Preparation of plant material 
 
Callus cultures of cv. Zenith, a rice cultivar resistant to blast strain 
Ina168, was used. For callus induction, surface-sterilized mature 
Zenith caryopses were placed on MS medium (Murashige and 

Scoog, 1962), supplemented with 4 mg L
-1

 2,4-D. They were then 

incubated in the dark at 27C for 2 - 3 weeks. The induced calli 

were maintained on MS containing less auxin - 2 mg L
-1

 2,4-D, with 
frequent sub-culturings after every 3-4 weeks. Calli were used 7 
days after sub-culturing on freshly prepared MS medium. 

 

Fungal culture 
 
The M. grisea strain, Ina168, which is avirulent to cv. Zenith was 
used. Cultures of Ina168 were maintained on semi-solid carrot 

medium, consisting of 50 g L
-1

 dry carrot + 20 g L - 1
 agar. Crude 

elicitor from M.grisea was obtained by autoclaving homogenized 
mycelia of the fungus. Elicitors from blast fungus have been shown 
to induce defense responses in rice (Schaffrath et al., 1995). 

 

Callus inoculation and collection of exometabolites 
 
Callus fragments (4-5 mg) were placed into a well of a 96-well 

tissue culture plate (”Linbro”, Flow Laboratories) containing 50 µl of 

  
  

 
 

 
distilled water. Then another 50 µl of water or blast spore 
suspension (200 thousand spores/ml) was added to the callus 

fragments. The plate was then incubated in the dark for 18 h at 

23C. Then, the liquid was collected with simultaneous removal of 

inoculum spores (Lapikova et al., 1994) and is further referred to as 

“exometabolites” in this report. 

 

Estimation of fungitoxicity of callus exometabolites 
 
Estimation of fungitoxicity of exometabolites were conducted 
according to the method described by Lapikova et al. (1998). 80 µl 
of callus exometabolite was poured into wells of 96- well plate and 

10 µl of freshly prepared spore suspension (3.5 x 10
4
 /ml) was 

added. 10 µl of water was also added to the mixture and incubated 

for 5 h at 23C. Then under inverted microscope, the number of 
spores that germinated was counted in 5 replicates of 100 spores. 
The measure of fungitoxicity of exometabolites was their capacity to 
inhibit fungal spore germination. The inhibition of germination was 
determined against spores incubated with 80 µl of water in place of 
a diffusate. All values are represented as means ± standard 
deviations (n = 5). 
 
 
Necrotic response 
 
Necrotic reactions of rice cells were evaluated visually 48 h after 

treatment with elicitor or after blast infection. The number of calli 

that turned dark brown was counted and presented as percentage 

of total calli treated. 

 

Role of calcium ions in fungitoxic response and necrosis 
 
To test the participation of calcium in the induction of the fungitoxic 
response, calli, during inoculation, were submerged in 50 µl of 0.1 

mM EGTA (Serva) or LaCl3 (0.05 to 10 mМ) instead of water (see 

above). The first agent is the Ca
2+

 chelator, and the second is the 
blocker of calcium channels in plasma membrane. Then 50 µl water 
spore suspension (or water in mock inoculation) was added 
following incubation and estimation of the diffusate toxicity as 
described above. The role of calcium in elicitor-induced necrosis 

was evaluated by adding EGTA or LaCl3 during treatment with 
elicitor. 
 
 
Assessment of involvement of ROS in elicitor-depended 

hypersensitive response 
 
Solutions of different antioxidant reagents sequestering particular 
ROS were added, instead of 10 µl water (see above), to rice cells, 
treated with fungal elicitor. To destroy superoxide radical, Tiron (1 
mM, sodium salt of 4,5-dihidroxy-1,3-benzene disulfonic acid, Serva 
Heidelberg) was used. To decompose hydrogen peroxide 
dimethylthiourea (30 mM, Sigma) (Toth et al., 1989) was employed 
similarly. To test the role of hydroxyl radical, its scavengers sodium 
formate (1 mM, Merck Darmstadt), mannitol (10 mM, Serva) or 
thiourea (0.5 mM, Sigma) were used. 
 
 
Generation of superoxide anion 
 
Generation of superoxide radical in the exometabolites of rice cells 

was assessed by the method of Nitro-Blue Tetrazolium (NBT) 

reduction (Doke, 1983) and measured with digital 

spectrophotometer “Shimadzu” UV-260 (Japan) in the absorption 

spectrum of 560 nm. 
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Figure 1. Necrotic reaction of callus culture to elicitor treatment. A, B, C, D and E are control calli that were not 

treated with elicitor, while F, G, H, I,, and J are calli, treated with elicitor, showing intense browning (necrosis). 
 
 
Role of oxidative enzymes 
 
Diphenelene iodonium (DPI, inhibitor of NAD(P)H-oxidase) (Cross 
and Jones, 1986) and Salicylhydroxamic acid (SHAM, inhibitor of 
peroxidase and lipoxygenase) were used in a pharmacological 
experiment to determine the role of oxidative enzymes in elicitor-

dependent necrotic reactions of cells. Cells were treated with elicitor 
together with either of the above-mentioned inhibitors or none after 
which necrosis is assessed. 

 

RESULTS 

 

Defense responses of rice calli to blast infection 
 

Inoculation of calli of resistant rice cultivar Zenith with 
spores of avirulent M. grisea strain Ina168 resulted in the 
production of exometabolites that inhibited the 
germination of fungal spores by 70%. On the other hand, 
the exometabolites from non-inoculated Zenith calli did 
not inhibit, but rather stimulated spore germination by as 
little as 2%. Distilled water, as expected, was not toxic, as 
the fungus had about 68% absolute spore germination in 
it.  

Apart from the blast-induced secretions of antimicrobial 
substances, intense browning (necrosis) of callus 
tisssues was also observed after treatment of calli with 
crude elicitor from blast fungus (Figure 1). Therefore, 
callus cultures of cv. Zenith respond to blast attack by 
accumulating antimicrobial substances and necrosis. It is 
interesting to find out the role of calcium ions in the 
induction of these blast-induced defense responses in 
Zenith calli. 

 

Involvement of Ca
2+

 in the defense reactions of rice 

calli to blast infection 
 
To investigate the involvement of calcium ions in blast-
induced defense responses of callus cultures, we used 

the Са
2+

 chelator, EGTA, or the Са
2+

 channel blocker, 

LaCl3. The addition of any of these compounds to 
infected rice calli inhibited the production of fungitoxic 

diffusate by the calli (Table 1). Also, when Ca
2+

 is 
removed from medium by adding EGTA, necrotic reaction 
of cells to elicitor treatment was significantly weakened 

(Table 2) . The addition of 1 mM CaCl2 after EGTA 
treatment reactivates the necrotic reaction of cells to 
elicitor treatment. However, other factors, like reactive 
oxygen species might also be involve in such defense 
responses. 

 

 

Table 1. Effect of EGTA or LaCl3 on the fungitoxicity of diffusates 

of rice calli (var. Zenith), infected with blast fungus (strain Ina 168). 
 
 
 Treatment Inhibition of spore 

  germination, % 

 Diffusate (without EGTA or LaCl3) 70 ± 9.0 

 Diffusate + EGTA 8±0.6 

 Diffusate + LaCl3 8±0.8 
 

 
Table 2. Effect of EGTA on necrotic reaction of rice calli to elicitor 

treatment.  
 

 Treatment % necrotic calli 

 No treatment 00.0 

 Elicitor treatment 66 3.6 

 EGTA, then elicitor 13 1.0 

 EGTA, then CaCl2, then elicitor 51.3 1.5 
 

 

Generation of superoxide radical 
 

Superoxide radical is known to specifically reduce NBT. 

We observed that exometabolites collected from infected 
rice calli also reduce NBT, signifying the presence of 

superoxide radical in the exometabolites (Table 3). 
Addition of SOD (an enzyme that specifically destroy 
superoxide radical) to the exometabolites diminishes its 

potential to reduce NBT. However, other reactive oxygen 
species (ROS) may also participate in the defense 

response of blast-infected calli. 
 
 
Table 3. Reduction of nitroblue tetrazolium (NBT). 
 

 Treatments A560 х 10
3
 

 Diffusate 112 16 

 Diffusate + SOD 308 

  SOD 75 
 

 

Role of ROS in elicitor-dependent necrotic reactions 

of cultured cells of rice 
 

In order to demonstrate the role of ROS (
•
OH, H2O2, O2

•
, 

1
O2) in necrotic response of calli to blast elicitor treatment, 

we added the following antioxidative reagents to the cells 



  
 
 

 
together with the elicitor: mannitol, formate or thiourea 

(these are known to specifically scavenge 
•
OH), 

dimethythiourea (scavenger of H2O2), tiron (scavenger of 

О2
•
), or histidine (

1
О2 quencher). All these reagents, 

especially dimethylthiourea and mannitol, weakened 
necrotic reaction (Table 4), indicating the participation of 
different ROS, particularly hydroxyl radical and hydrogen 
peroxide in elicitor-induced calli necrosis. 
 

 
Table 4. Effect of different antioxidative reagents on elicitor-

dependent necrotic reactions of cultured rice cells (cv. Zenith).  
 

Treatment % necrotic calli  

Elicitor treatment 97.7 2.5  

+ 2.3 mM histidine 56.0 5.3  

+ 30 mM dimethylthiourea 0.0 0.0  

+ 1 mM tiron 38.7 3.2  

+ 1 mM formate 40 1.0  

+ 10 mM mannitol 19.0 3.6  

+ 0.5 mM thiourea 39 1.0  
 

 

Role of oxidative enzymes in elicitor-induced callus 

necrosis 
 
The different ROS implicated in the blast-induced calli 
necrosis might be generated by oxidative enzymes, like 
peroxidase and NADPH-oxidase. We investigated the 

role of these enzymes in blast-induced calli necrosis with 
the help of specific enzyme inhibitors: SHAM for inhibition 

of peroxidase and DPI for inhibition NADPH-oxidase. As 
shown in Table 5, addition of these enzyme inhibitors 

reduces elicitor-dependent necrotic reactions of callus 
cultures, implying the participation of peroxidase and 
NADPH-oxidase in this reaction. 
 
 

DISCUSSION 

 

It has been shown that callus cultures of blast-resistant 

rice cultivar, Zenith, exudes fungitoxic exometabolites in 

response to inoculation with avirulent blast strain, Ina168. 

 
 
 

The fact that the exometabolites of non-inoculated calli 
were not fungitoxic may mean that the defense response 
in callus culture is not constitutive, but induced by the 
blast fungus. These results confirmed earlier 
observations that blast infection induces excretion of 
antimicrobial substances in leaves of blast resistant rice 
cultivars (Lapikova et al., 1994; Pasechnik et al., 1998).  

However, the exometabolites of blast-inoculated plant 
cell may be toxic not only to the blast fungus, but also to 
the host cell itself. This may explain the intense tissue 
browning (necrosis) we observed in callus cultures in 
response to treatment with elicitor from M. grisea.  

Probably, cells of resistant rice cultivar, not only when 
in tissues of leaves, but also while being isolated, 
recognize elicitor from avirulent blast fungus and induce a 
cascade of defense responses, leading, in parts, to 
exudation of fungitoxic exometabolites and plant tissue 
necrosis.  

Calcium ions (Ca
2+

) have been shown to participate in 
the induction of defense responses in several plant 
species (Levine et al., 1996; Sze et al., 2000; Harmon et 
al., 2000; Romeis et al., 2001). Recently, Engstrom and 
colleagues (2002) tested some pharmaceuticals that 
modulate the activity of calcium channels to demonstrate 
the role of calcium influx into cytozol in defense 
signalling. Using pharmaceuticals such as calcium 

chelator (EGTA) and calcium channel blocker (LaCl3), we 
have also demonstrated that the influx of extracellular 
calcium into cytozol is essential for the blast-induced 
excretion of fungitoxic exometabolites and cell necrosis in 
rice callus cultures. Our results correspond with earlier 
findings by Dmitriev et al. (1996) and the recent 
conclusions of Lecourieux et al. (2002), who also used 

EGTA and LaCl3 to confirm the role of Ca
2+

 in plant 
defense responses.  

It was earlier suggested that Ca
2+

 influx is necessary 

as second messenger for the elicitation of oxidative burst 
in plant cells (Lock and Price, 1994; Blume et al., 2000; 
Lecourieux et al., 2002), and that the oxidative burst, in 
turn, induces several subsequent defense responses of 
plants (Doke et al., 1996; Low and Merida, 1996; Orozco-
Cardenas et al., 2001; Pellinen et al., 2002). We have 
also demonstrated the role of reactive oxygen species 
(ROS) in elicitor-dependent necrosis in rice calli. When 
we infected rice calli with blast fungus, we observed that 
 

 

 
Table 5. Role of NADPH-oxidase and peroxidase (by the inhibitory effects of DPI and SHAM) in elicitor-dependent 

necrosis of rice calli (cv. Zenith). 
 

Treatment  % necrotic cells 

 No elicitor  With elicitor 

No additions of inhibitors 0.00  99.0 1.0 

Addition of 2 µM DPI 16.3 0.6  44.0 3.6 

Addition of 100M SHAM 17.0 1.0  33.0 1.0 
    



 
 
 

 

the exometabolites of the calli lead to SOD-sensitive 

reduction of NBT, implying the generation of superoxide 

radical in the exometabolites.  
The oxidative enzymes, NADPH oxidase and 

peroxidase, have also been implicated in plant defense 
response to stress factors (Wojtaszek, 1997; Orozco-
Cardinas et al., 2001; Pellinen et al., 2002; Shivakumar et 
al., 2003). Though the cellular targets of most 
pharmaceuticals are yet to be established in plants, 
pharmaceuticals are still widely used as important tools 
for identifying candidate components of signal 
transduction pathways (Engstrom et al., 2002). DPI, for 
example, is a pharmaceutical that specifically inhibits 
NADPH oxidase (O’Donnell et al., 1993) and has been 
successfully employed to investigate the role of NADPH 
oxidase in defense responses (Park et al., 2000; Orozco-
Cardenas et al., 2001). We also used similar approach to 
confirm the involvement of NADPH oxidase and 
peroxidase in the elicitor-dependent necrosis of rice 
callus cultures.  

It appears, therefore, that during incompatible rice-blast 
interactions, the blast fungus elicits the rapid increase of 

Ca
2+

 in rice cytosol which activates the generation of 

ROS through oxidative enzymes, like NADPH-oxidase 
and peroxidase. Thereafter, the generated ROS could be 
toxic to the invading blast fungus, and could also induce 
necrosis in rice cells. These findings may be critical in 
understanding the mechanisms of blast disease 
resistance in rice. 
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