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Attempts were made to quantify the buying and selling interaction of worldwide financial markets into 
quantitative findings. We introduce a probability density derived from non-extensive Tsallis statistical 
mechanics that can be applied to the interpretation of percent price index changes for important indices 

such as NYSE Composite, DJIA, S&P 500, NASDAQ Composite, FTSE 100, NIKKEI 225, Hang Seng, 
Straits Times and SET index. Results of applying Tsallis’ probability density through markets’ 
observation illustrated the behavior of all indices indicating super diffusive dynamics. Furthermore, an 
Ito-Langevin equation with a time-dependent diffusion coefficient and the nonlinear Fokker–Planck 
equation can exhibit investment risk of each price index. Finally, we not only explained the complex 
behavior of financial indices in Physics aspect, but simplified it into quantitative meanings able to be 
virtually used further as well. 
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INTRODUCTION 
 
In financial market, most securities analysts’ association 
consensuses analyze market data by using fundamental 
statistics, qualitative information and experience making 
their decisions without exactly understanding their 
dynamics’ type in scientific meaning. Therefore, Physics 
viewpoints are proposed in order to address this financial 
market dynamics. This is a kind of application of new 
interdisciplinary subject in the issue of Econophysics. 
Though microscopic interactions among traders which 
lead to behavior in financial markets are not easily 
understood, there are recently many attempts describing 
the behavior of market dynamics such as using agent-
based model (Amiri and Shirgahi, 2011) and time series 
analysis (Kamarposhti, 2011). Ising-like model has been 
a good candidate for describing this behavior for many 
years (Chowdhury and Stau_erb, 1999; Bornholdt, 2001), 
but until now, this method has not obviously been the 
most satisfying model. The advent of non-extensive 
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Tsallis statistical mechanics by means of maximizing the 
Tsallis entropy (Tsallis, 1988) connected with the 
essence of the nonlinear Fokker-Planck equation asso-
ciated with an underlying Ito-Langevin process (Plastino 
and Plastino, 1995; Borland, 1998) can more specify the 
type of diffusion and also be a good choice for taking into 
account of this dynamics. Previous work related to this 
statistics closely resembled markets’ observation 
including currency exchange price changes (Mantegna 
and Stanley, 2000), but their algorithms were not able to 
compare among market indices and were used only well 
in one hour price change (Michael and Johnson, 2003).  

The purpose of this paper is to develop more accurate 
microscopic interactive traders model based on preceding 
daily 20 years data in important market indices such as 
NYSE Composite, DJIA, S&P 500, NASDAQ Composite, 
FTSE 100, NIKKEI 225, Hang Seng, Straits Times and 
SET index (Yahoo Finance url: http://finance.yahoo.com.) 
and compare market risk altogether in at least unit of day. 
Moreover, investors and others can instantaneously 
make a comparison of the significant parameters in terms 
of the risk of investment in a simple way before they can 
effectively make 



 
 

 
investment decisions. 

 
THEORY 
 
Tsallis’ non-extensive statistical mechanics was chosen 
because it could be used to interpret the interactions of a 
complex system of financial market as follows. 
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Fokker-Planck equation 

 
Non-extensive statistical mechanics 
 
Non-extensive Tsallis entropy is written in a different way 
from statistical mechanics, but it can be proved to be 

Boltzmann-Gibbs entropy ( s  −∫p LN p ) by taking limit q → 1 . 
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        F(x) is a linear drift force and D is diffusion constant.  
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Condition  for  solving  Tsallis  probability  distribution 
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We  used  constraints  for  this non-extensive  entropy  as 
q  1   −ν  . (11) 

 

  
 

follows. 
We obtain the following 3 equations dependent of time. 
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We found that if q  (Tsallis non-extensivity parameter is       Z ( t )  
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where Z(t) is a normalization constant for each time. β t 
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              where ξ(t) is δ-correlated Gaussian noise.  
 

where B(x, y)   is Euler’s Beta function.                       
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The ordinary variance by using distribution of Equation 5 Equation 16 can be proved to be equivalent to Equation 
 

can be derived in Equation 8.        18 (Gardiner, 1997).        
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Nonlinear Fokker-Planck equation for 

Tsallis probability distribution function. 

 
 
 

  indices.  Day-to-day price indices  were selected to analyze such as 
t ) P ( x , t )] (18) NYSE Composite, DJIA, S&P 500, NASDAQ Composite, FTSE100, 
  NIKKEI 225, Hang Seng, Straits Times and SET index about 20 years 
  from September 1989 to January 2010 (randomly selected period of 
  1  results from time), approximately 5,000 days (T=1,2,…,5000). 

  Each price index is converted into the non-overlapping percent price 
  index change (x(j)) computed by 
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It can be easily seen that 
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where p(T) is price index at time T and t is time interval. Fitting (genetic 
algorithm method) a set of real market index data with Equation 5 which 

was set an initial time interval (t0) equal to 1 day, we  
(20) got an appropriate q parameter and β (t0 ) (Figure 1A). Parameter 

b and D were extracted from fitting a set of inverse variance data   

(21) ( β (t ) ) with that of its real data from time interval of 1-60 days (Figure 

2). Then, Tsallis probability distribution function ( P ( x , t ) ) from   
Substituting Equations 20 and 21 into Equation 16, we 
obtain Equation 22 

 dx
  F  x , t   DP ( x , t )

1− 
q
 ξ 

(t ). dt  
(22) 
 
A theory has been proposed to model anomalous 
diffusion when it is due to non-Gaussian statistics (Tsallis 
and Bukman, 1996). This theory led to 
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where α  is dynamic exponent parameter.  

This is the Tsallis relation. This quantifies a connection 
between anomalous diffusion and non-Gaussian 
statistics, predicting that a more highly non-Gaussian 
system (larger q ) will exhibit a greater degree of  
anomalous  diffusion  (larger q ).  In  other  words,  particle 
 
random motion is predicted to be super diffusive if the 
probability distribution function is a non-Gaussian 
distribution with q  1 (Bin et al., 2008). Due to Tsallis 
 
relation, we characterized the diffusion types with the q-
values. 

Considering the diffusion coefficient ( DP ( x , t )
1− 

q
  ), first, 

 
this is anomalous diffusion correlated in time (memory 
effects) except for q = 1 that is Brownian motion or 
normal diffusion. Second, if q is greater than 1, it is 
apparently observed that this is super-diffusion and 
makes the diffusion coefficient large in the next time step. 
On the contrary, last, if q is less than 1, the value of this 
equation tends to be small jump and that is sub-diffusion. 
 

METHODOLOGY 

 
  We applied theory into practice in aspect of behavioral financial market 

 
Equation 5 was shown in Figure 1B to E by using the aforementioned 

inverse variance data ( β (t ) ) and q parameter. Differential Equation 
 
14 was used in order to get a value of parameter a by fitting it with a set 
of average data of the real percent price index changes increasing 
with time interval (Figure 3). Diffusion coefficient ( DP ( x , t )

1− 
q
  ) from 

 
Equation 22 and from real market data were compared in Figure 4 
as well. 

 
RESULTS AND DISCUSSION 
 
There are 5 important parameters such as Tsallis 
parameter (q), dynamic exponent parameter ( α  ), 
parameters (a and b) from Equations 10 and 14, and 
diffusion constant (D).  

q is greater than 1, which leads to α greater than 1 as 
shown in Table 1. That means all indices perform the 
anomalous diffusion in superdiffusive type. In fact, indices 
should be super-diffusion because the financial market 
price indices are dependent on each people’s decision 
and interaction among traders. In Figure 1A to E, we 
depicted the distribution of percent price index changes in 
each time interval.  

It can be seen that the more the time interval increases, 
the wider the percent price changes distri-butions perform 
and the lower the highest point of this distributions shows 
in all indices.  

Parameters a and b from Equation 14 operate the 
mean’s drift or the fluctuation of average percent price 
index changes. The values of a and b shown in Table 1 
indicate that both differ little from zero. Moreover, the sign 
of parameter a and b determine the tendency of mean 
percent price index changes. That is to say, a positive 
sign of Equation 14 results in gradual increase in the 
means of percent price index changes as shown in Figure 
3, and the opposite result occurs for a minus sign. 
Diffusion constant in Equations 9 and 22 plays a 
significant role in a time-dependent diffusion coefficient ( 
DP ( x , t )

1− 
q
 ) modeled by Ito-Langevin process.  

Therefore, percent price  index   change  distributions 



  
 
 

 
Table 1. The values of essential parameters based on daily price from September 1989 to January 2010. 
 

Parameter 
 America  Europe  Asia   

 

NYSE DJIA S&P 500 NASDAQ FTSE 100 NIKKEI 225 HANG SENG Straits times SET 
 

 
 

q 1.69 1.60 1.68 1.66 1.40 1.53 1.73 1.59 1.56 
 

α 1.53 1.43 1.52 1.49 1.25 1.36 1.57 1.42 1.39 
 

a -0.025 -0.026 -0.022 -0.024 -0.015 0.048 -0.031 0.003 0.026 
 

b 0.02 0.017 0.019 0.016 0.015 0.027 0.023 0.014 0.012 
 

D 0.186 0.194 0.193 0.333 0.243 0.602 0.415 0.362 0.559 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Time evolution of percent price index change distributions only in SET index (A-D) Time interval of 1, 3, 5 and 7 days, respectively (E) 
Summation of time evolution. The line represents Tsallis data. The star symbol represents the calculated results of real financial market index data. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The inverse variance of percent price index changes. The line represents Tsallis data. The star symbol 
represents the calculated results of real financial market index data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The averages of percent price index changes. The line represents Tsallis data. The star symbol 
represents the calculated results of real financial market index data. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Diffusion coefficient in SET index along with time evolution (time interval from 1 to 7 days). The line represents Tsallis data. 
The star symbol represents the calculated results of real financial market index data. 

 
 

 
depend only on the most recent probability of percent 
price index changes due to a time-dependent diffusion 
coefficient and Ito-Langevin equation. We also show time 
interval evolution of diffusion coefficient in Figure 4. It 
obviously displayed that if time interval increases, 
diffusion coefficient mostly decreases at the same 
percent price index change data. We, however, also 
found that the lowest diffusion coefficient which is nearly 
zero percent price index change increases with time 
interval evolution, that reasonably means the probability 
to keep price index constant reduces with increasing time 
interval. The diffusion coefficient can give the investment 
risk information for investors and others as well. In this 
case, the recent percent price index change can predict 
the possibility of percent price index change for the next 
time interval by using the Ito-Langevin process in 
Equation 22. This result helps investors to make 
decisions better whether they should invest in each 
market.  

We show how to use Tables 2 and 3 (some data shown 
only two indices) to explain the tendency of percent price 
index changes in a simple way which does not use the 
Ito-Langevin process in Equation 22. Supposing the 

 
 

 
recent percent price index change equals -3.33% in the 
last 1 day time interval, then the diffusion coefficient 
equals 6.20 in SET index. If DJIA price changes by - 
3.33% in last 1 day time interval as well, the diffusion 
coefficient is 4.28. It tells us that percent price index 
change of SET index will fluctuate more than that of DJIA 
index, which is proportional to the risk of investment for 
the next 1 day time interval. 
 
 
Conclusion 
 
We can explain the behavior of financial market dynamics 
interpreted by the non-extensive Tsallis distributions 
connected with time evolution according to a nonlinear 
Fokker-Plank equation underlying Ito-langevin process 
with a time-dependent diffusion coefficient indi-cating 
super-diffusion in all indices. Our results reflect on the 
interaction among traders in diffusion coefficient term 
according to the risk of investment that depends on the 
previous step. We also simplify complicated theory into 
easier interpretation for commoners by using data from 
the diffusion coefficient table or the investment risk table. 



 
 
 

 
Table 2. Diffusion coefficient in SET index for each time interval and percent price change. 

 
Diffusion        Percent price change (%)         

coefficient (SET) -5.15 -4.55 -3.94 -3.33 -2.73 -2.12 -1.52 -0.91 -0.3 0.3 0.91 1.52 2.12 2.73 3.33 3.94 4.55 5.15 
 1 12.84 10.31 8.10 6.20 4.62 3.35 2.40 1.76 1.44 1.43 1.73 2.36 3.29 4.54 6.11 7.99 10.2 12.7 
 2 8.45 6.97 5.67 4.56 3.63 2.88 2.32 1.94 1.74 1.73 1.91 2.27 2.81 3.53 4.44 5.54 6.82 8.28 

Time 3 6.78 5.73 4.80 4.00 3.34 2.80 2.40 2.12 1.98 1.97 2.09 2.34 2.72 3.23 3.87 4.64 5.54 6.57 
interval 4 5.94 5.11 4.39 3.76 3.24 2.83 2.51 2.29 2.18 2.17 2.25 2.45 2.74 3.13 3.63 4.22 4.92 5.72 
(days) 5 5.46 4.78 4.18 3.67 3.24 2.89 2.63 2.44 2.35 2.33 2.40 2.56 2.79 3.11 3.52 4.00 4.57 5.23 

 6 5.16 4.58 4.07 3.63 3.26 2.96 2.74 2.58 2.50 2.48 2.54 2.67 2.87 3.14 3.48 3.89 4.37 4.92 
 7 4.97 4.46 4.02 3.63 3.31 3.05 2.85 2.71 2.63 2.62 2.66 2.77 2.94 3.17 3.47 3.82 4.24 4.72 

 

 
Table 3. Diffusion coefficient in DJIA index for each time interval and percent price change. 

 
Diffusion         Percent price change (%)        

coefficient [DJIA] -5.15 -4.55   -3.94   -3.33 -2.73 -2.12 -1.52 -0.91 -0.3 0.3 0.91 1.52 2.12 2.73 3.33 3.94 4.55 5.15 
 1 9.73 7.65 5.84 4.28 2.98 1.95 1.18 0.66 0.41 0.42 0.69 1.22 2.01 3.06 4.37 5.95 7.78 9.88 
 2 6.78 5.37 4.13 3.08 2.20 1.50 0.98 0.63 0.47 0.48 0.67 1.04 1.58 2.31 3.21 4.29 5.54 6.98 

Time 3 5.29 4.22 3.28 2.48 1.82 1.29 0.90 0.64 0.52 0.53 0.68 0.97 1.39 1.94 2.64 3.47 4.43 5.53 
interval 4 4.41 3.54 2.79 2.14 1.60 1.18 0.86 0.65 0.56 0.57 0.70 0.93 1.28 1.74 2.30 2.98 3.77 4.66 
(days) 5 3.83 3.10 2.46 1.92 1.47 1.11 0.85 0.68 0.60 0.61 0.72 0.93 1.22 1.61 2.09 2.67 3.33 4.09 

 6 3.41 2.78 2.23 1.76 1.38 1.07 0.84 0.70 0.63 0.65 0.75 0.93 1.19 1.53 1.95 2.45 3.03 3.70 
 7 3.10 2.55 2.06 1.65 1.31 1.04 0.85 0.72 0.67 0.68 0.77 0.93 1.17 1.47 1.85 2.3 2.82 3.41 
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