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Information criteria provide an attractive basis for model selection. However, little is understood about their relative 
performance in asymmetric price transmission modelling framework. To explore this issue, this research evaluated 
the performance of the two commonly used model selection criteria, Akaike information criteria (AIC) and Bayesian 
information criteria (BIC) in discriminating between asymmetric price transmission models under various conditions. 
Monte Carlo experimentation indicated that the performance of the different model selection criteria are affected by 
the size of the data, the level of asymmetry and the amount of noise in the model used in the application. The 
Bayesian information criterion is consistent and outperforms AIC in selecting the suitable asymmetric price 
relationship in large samples. 
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INTRODUCTION 

 
Alternative methods detect asymmetry at different rates 
or culminate in different inferences and conclusions 
(Meyer and von Cramon-Taubadel, 2004; Capps and 
Sherwell, 2007) . However, asymmetric price 
transmission modelling aims to select a single model from 
a set of competing models that best captures the 
underlying asymmetric data generating process for 
derivation of policy conclusions. This simulates interest in 
model selection methods. Consequently, information-
theoretic criteria such as Akaike’s Information Criteria 
(AIC) (Akaike, 1973) and Bayesian Information Criteria 
(BIC) (Schwarz, 1978) are increasingly being used to 
address model selection problems. However, very little is 
understood about relative performance of AIC and BIC in 
an asymmetric price transmission modelling context.  

Essentially, the two penalized criteria are based on two 
different model selection approaches. AIC is aimed at 
finding the best approximating model to the unknown 
data generating process whilst BIC is designed to identify 
the true model. AIC does not depend directly on sample 
size. Bozdogan (1987) noted that because of this, AIC 
lacks certain properties of asymptotic consistency. 
Although BIC takes a similar form like AIC, it is derived 
within a Bayesian framework, reflects sample size and 

 
 
 
 
 
have properties of asymptotic consistency. For reasonable 
sample sizes, BIC apply a larger penalty than AIC, thus 
other factors being equal it tend to select simple models than 
does AIC. From a Bayesian view point this motivates the 
adoption of the Bayesian information criteria. 

Using these two concepts, numerous model selection 
criteria have been developed, extending on the basic 
structures of AIC and BIC such as Consistent Akaike 
Information Criteria (CAIC) (Burhnam and Anderson, 
1998) and Draper’s Information Criteria (DIC) 
(Draper,1995). Unlike most of their analytical extensions, 
AIC and BIC can be readily computed in most standard 
software and are extensively used in empirical analysis. 
Subsequently, most previous studies comparing informa-
tion criteria have focussed on their use with generalized 
linear models and have focussed on comparison between 
AIC and BIC. These investigations have generally 
demonstrated that BIC is consistent whilst in contrast AIC 
is not (Bickel and Zhang, 1992; Zhang, 1993). Although 
AIC and BIC have been compared theoretically and 
empirically (Weakliem, 1999; Kuha, 2004) and examined 
empirically with respect to selection of stock-recruitment 
relationships (Wang and Liu, 2006) there has been no 
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empirical comparison for their relative performance in 
asymmetric price transmission modelling context.  

The main purpose of this article is to empirically 
evaluate and compare the performance of the two 
commonly used model selection criteria, AIC and BIC in 
discriminating between alternative methods of testing for 
asymmetry. A comparison of AIC and BIC will thus 
contribute to understanding information criteria modelling 
generally and of their empirical performance in price 
transmission analysis.  

The true data generating process is known in all 

experiments and the Monte Carlo simulations are 

essential in deriving the model recovery rates of the true 
model. 
 

 
METHODOLOGY 
 
Asymmetric price transmission models 
 
The Granger and Lee asymmetric Error Correction Model data 

generating process (DGP) can be written as follows: 
 

 PA ,t  1PB ,t   

 ECT 


 t 1 2 


 ECT 


 t 1  

 

 ~ N (0,
2
 ) (1) 

 

Using various sample sizes, PA and PB are generated as I (1) non 

stationary variables that are cointegrated. There exist an equilibrium 

relationship between PA and PB which produces I (0) 
 
stationary series. This equilibrium equation is estimated by least 

squares and the lagged deviation from this regression denoted by  

the Error Correction Term ( ECTt 1 ). The ECT is decomposed into 
 
positive and negative deviations using Wolffram segmentation 

(Granger and Lee, 1989) and plugged into the asymmetric error 

correction model specified in equation (1). 
 

Where E C T   PA t    1 PB t 

and E C T 


 t  1   E C T t  1

if
 ECT t 1  0  and   0 

otherwise and E C T 


 t  1  E C T t  1   if  ECT t 1  0 

and 0 otherwise.   
 
Asymmetry is introduced by allowing the speed of adjustment to 
differ for the positive and negative components of the Error 
Correction Term (ECT) since the long run relationship captured by 
the ECT was implicitly symmetric (see Cook et al., 2000 ; Holly et 
al., 2003, Cook et al., 1999). Symmetry in equation (1) is tested by  

determining whether the coefficients ( 


 and 2


 ) are identical 

(that is H0 : 


 2


 ). 
 

Granger and Lee (1989) proposed a model to test for 
asymmetries in the adjustments to the equilibrium level. 
Alternatively, von Cramon-Taubadel and Loy (1996) proposed a 
model in which asymmetries specified affects the direct impact of 
price increases and decreases as well as adjustments to the 
equilibrium level.  

The von Cramon-Taubadel and Loy (1996) asymmetric Error  
Correction Model can be written as follows: 

 
 
 
 
 
 

P   

P


   


P


  


ECT 


  


ECT


 
t1 
 e 

 

A,t 1 B,t 1 B,t  t12  
 

e ~ N (0,e
2
 ) (2)      

 

Where P

 and P


 are the positive and negative changes in 

 

 B,t  B,t      
 

PB,t and the remaining variables are defined as in equation (1). 

Von Cramon-Taubadel and Loy (1996) suggested that the PB,t in 

equation (1) can also be split into positive and negative components 
to allow for more complex dynamics and applied equation (2) to 
study spatial asymmetric price transmission on world wheat 
markets. The remaining model variables were defined as in 
equation (1) and formal test of the asymmetry hypothesis using  

equation (2) is: H 0 :   


  1 


 and 


 2


 . Noticeably, 

since equation (2) involves a linear combination of coefficients, a 

joint F-test can be used to determine symmetry or asymmetry of the 

price transmission process.  
In contrast to von Cramon- Taubadel and Loy (1996) and Houck 

(1977), proposed a model in which asymmetries specified affects 
the direct impact of price increases and decreases and does not 
take into account adjustments to the equilibrium level. The Houck 
approach can be specified as follows: 
 

 P A , t   

 1

PB


,t1


PB


,tt  

t  ~ N (0,
2
 ) (3) 

 
Model variables are defined as in equation (2). Symmetry is tested by 

determining whether the coefficients ( 1

 and 1


 ) are identical 

 

(that is H0 : 


  1


 ). 
 
 
Model selection using information criteria 
 
Model selection refers to the problem of using the data to select one 
model from the list of competing models. Essentially, it involves the 
use of a model selection criterion to find the best fitting model to the 
data (Wasserman, 2000). Model selection using information criteria 
has been developed to summarize data evidence in favor of a 
model. Specifically, information criteria techniques emphasize 
minimizing the amount of information required to express the data 
and model. This results in selection of models that are efficient 
representation of the data. 

 

Akaike’s Information Criteria (AIC) 
 
One of the most commonly used information criteria is AIC. The 
idea of AIC (Akaike, 1973) is to select the model that minimises the 

negative likelihood penalised by the number of parameters as 
specified in the equation (4). 
 

A I C 2 l o gp(L)2p  
(4) 
 

Where L refers to the likelihood under the fitted model and  p is 
 
the number of parameters in the model.  

Specifically, AIC is aimed at finding the best approximating model to 

the unknown true data generating process and its applications 



 
 
 

 
Table 1. Relative performance of the model selection methods across sample size.  

 
Experiment criterion Model fitted   

Methods CECM (%) HKD (%) SECM (DGP) (%)   

n  50   1 
 

n  150   1 
 

n  500 1 

  
 

AIC 17.0 4.8 78.2 

BIC 6.3 11.9 81.8 

AIC 17.5 0.0 82.5 

BIC 3.0 0.1 96.9 

AIC 16.8 0.0 83.2 

BIC 1.6 0.0 98.4   
Note: Recovery rates based on 1000 replications. 

 

 

draws from (Akaike, 1973; Bozdogan, 1987; Zucchini, 2000). 
P

A and 

P
B are generated as I (1) non stationary variable that are 

 

 
 

 cointegrated. The  ECTs  denotes  the  positive  and  negative 
   

Bayesian information criteria (BIC) 
 
Another widely used information criteria is the BIC. Unlike Akaike 
Information Criteria, BIC is derived within a Bayesian framework as 

an estimate of the Bayes factor for two competing models 
(Schwarz, 1978; Kass and Rafftery, 1995). BIC is defined as: 
 

B I C   2 lo g  p ( L )   p lo g ( n )  
(5) 
 
Superficially, BIC differs from AIC only in the second term which 
now depends on sample size n. Models that minimize the Bayesian 
Information Criteria are selected. From a Bayesian perspective, BIC 
is designed to find the most probable model given the data.  

Performance of the model selection criteria in selecting good 
models for the observed data is examined using simulation studies. 
Such a comparison is not straight forward and even its relevance 
could be questioned, given that the two criteria are based on 
different theoretical motivations and objectives. However, for 
application purpose, the Akaike Information Criteria and the 
Bayesian Information Criteria do have the same aim of identifying 
good models even if they differ in their exact definition of a “good 
model”. Comparing them is thus justified, at least to examine how 
each criterion performs according to recovery of the correct model 
or how they behave when both should prefer the same model. 

 

A simulation study 
 
The objective of the simulation study is to see whether the model 
selection methods are capable of identifying the true model. 
Following the experimental designs of Holly et al. (2003) among  

others the    value    of 1 is set    to 0.5 and 

( 

 ,2 


 )  (0.25, 0.75) are considered for the 

coefficients of the asymmetric error correction terms in the true 
model. The competing models are fitted to the simulated data and 
their ability to recover the true model was measured. The recovery 
rates were derived using 1000 Monte Carlo simulations. The data 
generation process is specified in equation (1) and the data is 
simulated from the standard ECM as follows: 
 

PA,t   0.5PB ,t  0.25ECT 


t 1  0.75ECT 


t 1   
 
(6) 

 

deviations from the equilibrium relationship between PA and PB . 
 

In order to examine the effect of the increase in difference of 
asymmetric adjustment parameters on model recovery the study 
simulated data of sample size 150 with an error size of 1 from the 
standard asymmetric price transmission model specified in equation 

6 and asymmetry values ( 


 , 2 


 )  (0.25, 0.50) or 

(0.25, 0.75) are considered for the coefficients of the 
asymmetric error correction terms. 

 

 

RESULTS AND DISCUSSION 

 

Model recovery rates of the different model selection 

criteria 
 
This section compares the performance of AIC and BIC in 
recovering the true data generating process (DGP) by 
simulating the effect of sample size, noise levels and the 
level of asymmetry on model selection. The relative 
performance of the two methods are compared in terms 
of their ability to recover the true data generating process 
(DGP) across various sample size conditions (that is 
Model Recovery Rates) as illustrated in Table 1. In the 
foregoing discussion, the standard asymmetric error 
correction model, the complex asymmetric error 
correction model and the Houck’s model in first 
differences are denoted by SECM, CECM and HKD 
respectively.  

For each method the model recovery rate defines the 
percentages of samples in which each competing model 
provides a better model fit than the other competing 
models. The model selection methods performed 
reasonably well in identifying the true model, though their 
ability to recover the true asymmetric data generating 
process (DGP) increases with increase in sample size. In 
small samples (upper part of Table 1), the model 
selection methods recovered at most 81.8%. When the 
sample size was large (Lower part of Table 1), the model 
selection methods recovered at most 98.4%. AIC 



 
 
 

 
Table 2. Relative performance of the selection methods across error size.  

 
Experiment criterion Model fitted 

 Methods CECM (%)   HKD (%)   SECM (DGP) (%)  

n  150   3 
 
 

n  150   2 
 

 

n  150  1 

  
 

AIC 12.3 22.4 65.3 

BIC 1.2 52.1 46.7 

AIC 17.3 15.1 77.7 

BIC 1.8 18.7 79.5 

AIC 18.3 0.0 81.7 

BIC 2.4 0.1 97.5   
Note: Recovery rates percentages based on 1000 replications. 

 
 

Table 3. Effects of sample size and stochastic variance on model recovery.  
 

Experiment criterion Model fitted 

 Methods CECM (%)   HKD (%)   SECM (DGP) (%) 
  

  2 n  50 

 

n  150   0.5 

 
 

AIC 9.9 35.4 54.7 

BIC 2.8 55.9 41.3 

AIC 18.3 0.0 81.7 

BIC 2.5 0.0 97.5   
Note: Recovery rates based on 1000 replications. 

 

performs well in small samples, but is inconsistent and 
does not improve in performance in large samples whilst 
BIC in contrast is consistent and improves in performance 
in large sample size.  

Generally, model selection performance improved as 
sample sizes increased. Two distinct patterns can be 
noted with regards to the recovery rates of the true model 
(DGP) in Table 1. First, recovery rates of the Bayesian 
criteria varied strongly as a function of sample size. 
Second, although AIC performed well in the small 
samples, it did not make substantial gains in recovery 
rates as the sample size increased.  

The observed patterns are consistent with previous 
studies on model selection in other applications. Ichikawa 
(1998)’s simulation results in a factor analysis indicated 
that the ability of AIC to select a true model rapidly 
increased with sample size but at larger sample sizes it 
continued to exhibit a slight tendency to select complex 
models. Similarly, Markon and Krueger (2004) reviewed 
existing work on factor analysis and noted that AIC 
performs relatively well in small samples, but is 
inconsistent and does not improve in performance in 
large samples whilst BIC in contrast appears to perform 
relatively poorly in small samples, but is consistent and 
improves in performance with larger sample size.  

In order to simulate the effects of noise level on model 
selection, this study considers three error sizes ( ) 
ranging relatively from small to large and corresponding 
to 1.0, 2.0 and 3.0. Using 1000 Monte Carlo simulations, 
data is generated from equation (6) with the different 

 

 

error sizes and a sample size of 150. The data fitting 
abilities of alternative models are compared in relation to  
the true model as the error in the data generating process 
was increased systematically.  

The performance of the model selection algorithms 
analysed deteriorates with increasing amount of noise in  
the true asymmetric price transmission data generating 

process (SECM) as illustrated in Table 2. BIC outperforms 

AIC in recovering the true data generating process at lower 

noise levels ( = 1 - 2) but at higher noise levels ( = 3), AIC 

outperforms BIC.  
Simulating the effects of sample size and stochastic 

variance concurrently affirms that a small error and large 
sample improves recovery of the true asymmetric data 
generating process and vice versa. With a small sample of 

50 and an error size of 2.0 the true data generating process 

was recovered at least 41.3% of the time by the model 

selection criteria as illustrated in Table 3.  
On the other hand, with a relatively large sample of 150 

and error size of 0.5 at least 81.7% of the correct model was 
recovered across all the model selection methods as 
indicated in the Table 3.  

The model recovery rates of the model selection methods 
are derived under combined conditions of a small sample 
size of 50 and large error size of 2 (that is Unstable 
conditions) and a relatively large sample size of 150 and a 
small error size of 0.5 (that is Stable conditions). Under 
stable conditions, model selection performance or recovery 
rates improves for the true model.  

Table 4 illustrates how the different model selection 

methods exhibit different relative performance in 



 
 
 

 
Table 4. Effects of the level of asymmetry on model recovery.  

 
Experiment criterion  Model Fitted  

 

   Methods CECM (%) HKD (%) SECM (DGP) (%) 
 

  
 0.25 

AIC 16.35 0.22 83.43 
 

 2 BIC 2.71 1.72 95.57  

   
 

  
 0.50 

AIC 16.5 0.00 83.5 
 

 2 BIC 2.83 0.03 97.14  

     
Note: Recovery rates based on 1000 replications. 

 

 

recovering the true model at different levels of 
asymmetry. An increase in the difference between the 
asymmetric adjustments parameters from 0.25 to 0.50 led 
to improvement in the model recovery rates of the true 
asymmetric data generating process by the model 
selection methods. Generally, recovery rates of the 
Bayesian criteria responds more strongly to increases in 
the difference between the asymmetric adjustments 
parameters for the true model.  

In effect, another factor which may influence model 
selection or the recovery of the true data generating 
process is the difference in asymmetric adjustment 
parameters as illustrated.  

An important feature of the current study is that they 
generally echo existing theoretical and empirical work on 
the performance of model selection methods in other 
applications. First, the results of the Monte Carlo 
experimentation establish that AIC and BIC does identify 
the true asymmetric data generating process. Similarly, 
Myung (2000) demonstrated via Monte Carlo 
experimentation that BIC and AIC clearly identify the true 
data generating process in a cognitive psychology 
modeling framework.  

With regards to the effect of noise levels on model 
selection, the results of the current study suggest that the 
amount of noise in the asymmetric data generating 
process is important for the purposes of model selection. 
Results obtained are generally consistent with trends 
suggested by previous studies (Gheissari and Bab-
Hadiashar, 2003; Yang, 2003), in that the performance of 
AIC and BIC deteriorates with increases in the amount of 
noise in the data generating model. Yang (2003) finds 
that the recovery rates of the true data generating 
process decreases with increasing noise levels in linear 
regression models. Within the asymmetric price 
transmission modeling framework, AIC outperforms BIC 
when there is a high amount of noise in the true model. 
Similarly, Chen et al. (2007) note the tendency of BIC to 
perform worse than AIC at high noise levels in a factorial 
analysis.  

The findings of the current study reinforce the 
importance of design informativeness in conducting 

asymmetric price transmission analysis. Simulation 
results suggested that AIC performs relatively well in 

small samples but is inconsistent and does not improve 

 
 

 

performance in large samples whilst BIC in contrast 
appears to perform relatively poorly in small samples but 
is consistent and improves in performance with sample 
size in the price transmission modeling context. This is 
consistent with previous studies which demonstrated that 
BIC is consistent (that is tends to choose the true model 
with a probability equal to 1 in large samples (Bickel and 
Zhang 1992). Overall, the current results suggest that 
generally AIC should be preferred in smaller samples 
whilst BIC should be preferred in larger samples in the 
price transmission modeling context.  

On the level of asymmetry, the results indicated that the 
performance of the model selection methods in 
recovering the true data generating process depends on 
the difference in asymmetric adjustments parameters or 
speeds. Similarly, without regards to information criteria, 
Cook et al. (2003) observed that the difference in 
asymmetric adjustment parameters from 0.25 to 0.50 has 
positive effect on the test of asymmetry. On the basis of 
the recovery of the true model, BIC should be preferred to 
AIC in applications in which the data has strong levels of 
asymmetry.  

Within the asymmetric price transmission modeling 
framework, this study has not only shed light empirically 
on the relative performance of the model selection 
algorithms of which no studies has been undertaken, but 
has also established that the Bayesian criteria correctly 
identifies the true asymmetric data generating process. 
 

 

Conclusion 

 

The model selection criteria examined clearly identify the 
correct asymmetric model out of alternative competing 
models. Fundamentally, the results reinforce the 
importance of design characteristics in conducting 
asymmetric price transmission studies. The results of the 
Monte Carlo simulation indicate that the samples sizes, 
level of asymmetry and noise levels are important in the 
selection of the true asymmetric model. Larger sample 
sizes or lower noise levels improve the ability of the 
model selection methods to point to the correct 
asymmetric price transmission models. Under unstable 
conditions such as small sample and large noise levels 
AIC outperforms BIC. An increase in the difference 



 
 
 

 

between the asymmetric adjustments parameters 
improves model recovery rates of the true asymmetric 
data generating process by the model selection methods. 
The comparison provided contributes to knowledge and 
understanding of the relative performance of the Akaike’s 
Information Criteria and the Bayesian Information Criteria 
in an asymmetric price transmission modeling framework 
which has remained understudied. The validity of AIC and 
BIC in selecting the correct model in the price 
transmission modeling framework in the current studies 
suggest that other AIC and BIC based estimators hold 
promise as model selection criteria. 
 

 

Notes 

 

All simulations were performed using R programming 

language version 2.9.2 with the random number 

procedure used to generate pseudo i.i.d. N (0, 1) random. 
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