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For examining efficiency of Artificial Neural Network (ANN) for prediction of yield in wheat, a factorial 
experiment was set out in a randomized complete block design (RCBD) with three replications in a 
glasshouse. The treatments were included of four saline solutions and 8 wheat genotypes. This paper 
shows the ability of artificial neural network (ANN) technology to be used for the prediction of yield and 
yield components of 8 wheat genotypes for different salinity levels. Based on analysis of variance, 
salinity had significant effect on all traits, as salinity levels increased, yield and 1000-grain weight and 
K+ concentrations decreased. The results showed that a very good performance of the ANN model was 
achieved. Some explanation of the predicted results is given. The ANN with training algorithm of back 
propagation was the best one for creating of nonlinear mapping between input and output parameters. 

The ANN model predicted the six yields and yield components with mean R
2
 and T values of 0.977 and 

0.97 respectively. Furthermore, the predictions of ANN model were compared with those obtained from 
six multi-linear regression (MLR) models. It was found that ANN model has better predictions than the 
MLR models for the experimental data. 
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INTRODUCTION 

 
Mahajan and Tuteja (2005) reported that food productivity 
is decreasing due to the effect of various abiotic stresses; 
so minimizing these losses is a major area of concern for 
all nations to cope with increasing food requirements. 
Cold, salinity and drought are among the major stresses, 
which adversely affect plants growth and productivity; 
(Mahajan et al., 2005). Salinity is one of the major 
environmental factor limiting plant growth and productivity 
(Allakhverdiev et al., 2000). Bread wheat (Triticum 
aestivum L.) is a major food crop in most countries of the 
world which suffer saline soils, and therefore increasing 
salinity tolerance in bread wheat is necessary (Sadat and 
Harati, 2005). Kumar (2005) mentioned that during the 
onset and development of salt stress within a plant, all 
the major processes such as photosynthesis, protein 
synthesis, energy and lipid metabolism are affected. 
Maintenance of adequate levels of potassium (K+) is  
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essential for plant survival in saline habitats. Under 
saline-sodic or sodic conditions, high levels of external 
sodium (Na+) not only interfere with K+ acquisition by the 
roots, but also may disrupt the integrity of root 
membranes and alter their selectivity. Bar-Tal et al. 
(1991) reported that increased salinity in the irrigation 
water significantly decreased yield. These investigators 
concluded that despite its beneficial effects on increasing 
K+/Na+ ratio within the plant, K+ fertilization did not 
reduce the deleterious effects of salinity.  

Cellular injury also showed a significant positive 
correlation with Na+ and a negative correlation with K+ 
and grain yield. All salinity levels beyond 150 mM NaCl 
reduced grain yield differently, where this reduction in 
grain yield (GYR) was significant at 100 mM (23 and 26% 
of control, respectively) (Faroop and Azam, 2005). Study 
of Reddy et al. (2003) showed that abiotic stresses such 
as salinity affect rice yield components and grain quality. 
Among these components, 1000-grain weight (TGW) is 
thought to be quite constant due to a rigid hull whose size 
is genetically determined, but chilling and salinity stresses 



 
 
 

 

have been reported to strongly reduce TGW (Katerji et 
al., 2005). Francois et al. (1986) concluded that soil 
salinity reduced the ash content and improved the color 
and the protein content. The grain quality criteria of the 
sensitive variety were not affected by salinity. Literature 
does not mention relationships between salt tolerance 
and grain quality of Mediterranean durum wheat varieties. 
Breeding for adaptation to abiotic stress is extremely 
challenging due to the complexity of the target 
environments as well as that of the stress-adaptive 
mechanisms adopted by plants (Reynolds et al., 2005). 
The 1000-grain weight, ash content and beta- carotene 
content of durum wheat were improved, but the main 
parameters for the gluten index, declined considerably 
(Katerji et al., 2005).  

The experiments described here were carried out to 
examine the potential for enhancing the degree of salinity 
tolerance in parent and their hybrids of wheat. The 
understanding and modeling of nonlinear relationship 
between salinity level with wheat seed yield, 1000-grain 

weight, grain/ear, K
+
 concentrations, and K+/Na+ ratio in 

the first leaf below the flag leaf of different genotypes is 
an important object in farm management. Often times, 
finding an analytical expression of the relationship may 
not always be possible. However, more complex linear 
methods, including various forms of multiple linear 
regressions, have been widely considered in crop 
modeling. For instance, different researchers like: 
Oosterbaan (2003), Enclona et al. (2004), Eugene et al. 
(1996) Simane et al. (1993) and Dencic et al. (2000) used 
multiple linear regression model to predict wheat yield.  

Crop growth is a multifactorial nonlinear process and 
different mathematical crop growth models have been 
developed for different purposes in agricultural 
management and economy (Khazaei et al., 2008c). The 
precise and prompt prediction of crop yield and yield 
components will be of great help in making scientific 
decisions and plans. Agronomic models to predict yield 
and crop growth are based on mechanistic or almost 
empirical approaches (Poluektov and Topaj, 2001). 
Mechanistic models use mathematical functions to 
represent biological processes (Whisler et al., 1986). In 
view of the fact that even the most deterministic models 
still rely heavily on empirical functional relationships to 
varying degrees (Jame and Cutforth, 1996), empirical 
crop growth models may play an important role as 
explanatory tools for identifying the hidden structure of 
crop growth processes. They may even offer a more 
reliable method of investigating crop response than 
poorly calibrated process models when the necessary 
data are available. 
 

The main limitation of traditional regression-based 
empirical models is the lack of non-linear modeling ability, 
which is apparent in crop responses to agro-ecological 
conditions. Furthermore, one of the major limitations of 
empirical model building exercises is that they require a 
large amount of data to obtain reliable training results and 

 
 

 
 

 

to validate trained models (Schultz et al., 2000). This is a 
particularly an important issue in agronomic research 
considering the cost and time necessary for conducting 
farm trials. Furthermore, the representative problem that 
the statistical models can solve is one dependent variable 
versus several independent variables. Nevertheless, 
when researching the problem same as this one in this 
study, we study the relationship between several 
independent variables (assuming it includes two 
components: salinity level and genotype) and several 
dependent variables (yield, number of grain/ear, 1000-
grain weight, K+ concentrations, and K+/Na+ ratio), and 
that this relation is obviously multiple-variables versus 
multiple-variables.  

Given such complex relationships, one regression 
model is required for each output. This limitation 
increases the number of models which must be 
considered for each study. Furthermore, analytical 
models that explain a highly non-linear relationship with 
interactions among variables are often difficult to obtain. 
One of the most appropriate methods to eliminate these 
problems seems to be the soft computing techniques, 
such as artificial neural networks (ANN). ANN models are 
a powerful empirical modeling approach and yet relatively 
simple compared to mechanistic models. ANN can be 
used to develop empirically based agronomic models. 
ANN offers an alternative way to simulate complex and ill-
defined problem. The use of ANNs has gained increasing 
popularity for applications where the dependency 
between dependent and independent variables is either 
unknown or very complex which are hard to describe by 
mathematical models. The ANN approach seems to work 
rather well with noisy data than its statistical counterparts 
(Khazaei et al., 2008). This ability is more important in 
modeling agricultural data.  

The use of neural networks is motivated because of 
their accommodation of non-linearities, interactions, and 
multiple variables. Unlike statistical models which 
generally require assumptions about the parametric 
nature of the factors (which may or may not be true), 
ANNs do not require a priori assumption of the functional 
form of the model. ANN has the capability to develop 
functional relationships between input-output patterns 
obtained from any source and can be conveniently used 
to develop a generalized relationship from limited and 
sometimes inconsistent data. Agronomic ANN 
applications include prediction flowering time (Welch et 
al., 2003), soil–water retention estimations (Schaap and 
Bouten, 1996), yield estimation (Drummond et al., 1995; 
Khazaei et al., 2008c), crop development modeling 
(Elizondo et al., 1994), identifying of origin and 
subspecies of crop genotypes (Khazaei et al., 2008b), 
and classifying different varieties of agricultural crops 
(Mahmoudi et al., 2006). Starrett et al. (1997) reported 
that an ANN model performed better (R2 = 0.984) than a 
regression model (R2 = 0.780) when predicting applied-
nitrogen leaking below the root zone of turf grass. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. A typical neuron with sigmoidal function. 

 
 

 

Pachepsky et al. (1996) reported ANNs estimated soil 
water content based on soil physical properties better 
than regression techniques. According to Batchelor et al. 
(1997), ANNs produced better results than traditional 
statistical methods when predicting soybean rust.  

The goal of this study was to develop a simple yield 
and yield components prediction models for wheat with 
readily available data that could be easily applied by an 
end user such as a nutrient management specialist. The 
specific objectives of this study were to: 

 
(1) Investigate if an ANN could effectively predict yield 
and yield components of 8 wheat genotypes for different 
salinity levels; and  
(2) investigate the ANN model performance with 
variations of ANN parameters. 

 

The fundamentals of the ANN technique, what ANNs are 
and how they work, is given in detail in various literature 
(Khazaei et al., 2008c; Marinia et al., 2004; Shearer et al., 
1999). However, an ANN consists of a series of layers 
starting with an input layer, ending with an output layer 
and having a number of ‘hidden’ layers in between. Each 
layer consists of a series of linear or nonlinear neurons. 
Neuron is the smallest computation unit of data and is the 
basis of ANN models Figure 1. The number of 

 
 
 

 

input neurons is equal to independent (input) variables 
and number of output neurons is equal to number of 
dependent (output) variables. Hidden layers are required 
to introduce non-linearity in the problem and determine 
how well a problem can be learned. In order to train and 
validate an ANN model, it is usual to randomly divide the 
available data into training and test sets for training and 
testing the ANN model, respectively. Once a network is 
trained, the testing set is used to estimate the 
generalization performance of the model. If the level of 
prediction is not acceptable in the testing phase, training 
has to be repeated to optimize the ANN parameters such 
as number of hidden layers, neurons per hidden layer, 
activation function, initial weight range, learning rate, 
momentum, etc. so that better prediction is obtained 
during testing phase. 

 

MATERIALS AND METHODS 
 
Genetic materials 
 
In this experiment we used four moderate salt-tolerant variety of 
bread wheat (T. aestivum L), Siette Ceros (CIMMYT, Mexico), 
Ho2(Libya), Lermaroja (CIMMYT, Mexico), Cajema (CIMMYT, 
Mexico) and three hybrids (Cajema x Sette Cerros, Cajema x Ho2, 
Cajema x Lermaroja) and a British salt sensitive variety (Axona) as 
control (Table 1). After making crosses and producing F1 and F2 



 
 
 

 
Table 1. Name, origin and abbreviated name of genotypes.  

 
Number of genotype Group Abbreviated name Name Origin 

 

1  Caj × Set Cajema × Sette Cerros _ 
 

2 Hybrids Caj × Ho Cajema × Ho2 _ 
 

3  Caj × Ler Cajema × Lermaroja _ 
 

4 Control Ax Axona British salt sensitive 
 

5  Set Sette Cerros CIMMYT, Mexico 
 

6 
Parents 

Ho Ho2 Libya 
 

7 Ler Lermaroja CIMMYT, Mexico  

 
 

8  Caj Cajema CIMMYT, Mexico 
 

 

 
Table 2. Nutrient solution for sand and water culture experiments based upon solution used by Hewitt (1966).  

 

Salt 
Concentration in stock solution Add to 10 L deionised water to give 

 

(g l-1) solution full strength  

 
 

CaNo3.4H2o 472.0 10 
 

K2HPO4 58.0 30 
 

MgSO47H2O 123.0 20 
 

Fe EDTA 12.5 10 
 

KCL 124.3 10 
 

Trace elements   
 

MnSO4.4H2O 2.02 10 
 

H3BO3 2.86 10 
 

(NH4)6Mo7O24.4H2O 0.184 10 
 

Zn SO4 0.44 10 
 

Cu.SO4.5H2O 0.39 10 
 

 
 

 
generations (Table 1), because of limited number of seeds 
generated in the F2 generations, all F2 families were grown on to 
provide F3 generation seed at the Ness Botanic Gardens in field 
conditions to provide suitable number of seeds. 

 

Glasshouse experiment 
 
The experiment was carried out in a glasshouse; day temperature 
22±2°C and night temperature 16±2°C with natural daylight 
supplement by 400 watt mercury vapor lamps to give 16 h day 
length. Plastic pots of 18 cm diameter and 19 cm depth were filled 
with 4.40 kg washed river sand (oven-dried weight). The sand was 
thoroughly washed with tap water for one week, followed by three 
washings with full strength nutrient solution (Table 2) (Hewitt, 1966). 
Four salt concentrations were used: 0 (control), 150, 200 and 250 
mM NaCl. All salt treatments were applied in the full strength 
solution. Six-day-old seedlings of each genotype were grown 
separately and equidistantly from each other in each pot at a rate of 
five seedlings per pot. Salt treatments were commenced 18 days 
after the start of the experiment, and the salt concentration was 
increased stepwise in aliquots of 25 mM every other day until the 
appropriate treatment concentration was reached. Twice per week, 
200 ml of deionized water was added to each pot to maintain sand 
moisture and to prevent additional salt accumulations into the pots. 
Electrical conductivity of the leachates was tested weekly. The first 

 
 
 
leaf below the flag leaf from each plant was removed 30 days after 
the beginning of the salt treatment, rinsed in deionized water, dried 
between tissue papers, and oven dried at 60°C for 72 h. The dried 
leaves were chopped into 1 to 2 mm pieces, and used for the 
subsequent chemical analysis. The data obtained from the 
experiments were used for training and testing the neural network 
model. 

 

Measurements 
 
Sodium (Na+) and Potassium (K+): 10-15 mg leaf samples were 
placed in small glass bottles, and 1 ml concentrated nitric acid was 
added to each tube. Digestion was carried out on a hot plate at 
80°C. After digestion the volumes of the samples were made up to 
10 ml with deionized water. Na+ was measured at 598 nm and K+ 
at 766.5 nm wavelengths, using a flame emission 
spectrophotometer (Perkin Elmer Model 1373) a blank of 1 ml of 

concentrated nitric acid was used to adjust Na
+
 and K

+
 

concentration in the samples. For measuring chloride\ (Cl-): 20 mg 
of leaf sample from each plant, and 10 ml deionized water were 
placed in small glass bottles and heated on a hot plate at 70°C for 3 
h. Cl- content of the extracted samples was determined using a 
Mercuric thiocyamate reagent (Sigma Chemical Co.), and reading 
the color which developed at 460 nm. A blank of 1.5 ml of chloride 
reagent and 1.5 ml distilled-deionized water was used to adjust Cl- 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The neural network model for prediction of the yield and yield components of wheat.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. System configuration of ANN system for prediction of yield and yield components of wheat genotypes at different 
salinity. 

 

 
concentrations in the samples. 

 

Statistical analysis 

 
Data were subjected to analysis of variance (ANOVA) by the PROC 
MIXED of SAS (SAS Institute, 1990) as a factorial experiment. The 
entries were arranged in a randomized complete block design with 
3 replication. Within the model, both genotypes and salinity level 
were considered fixed effects and blocks considered as random 
effect. Comparison of means was also performed with Duncan's 
multiple range test (DMRT). 

 

Neural networks model development 

 
The general process to build an ANN model included creating data 
sets for training and testing, training networks with varied 
parameters, analyzing network results, and testing the models 
(Broner and Comstock, 1997). In this study, a feed-forward multi-
layered perceptron (MLP) ANN trained by back propagation (BP) 
algorithm was selected to model the correlation between salinity 
levels and wheat genotypes with number of grains per ear, yield, 

 
 

 

1000-grain weight, K
+
 concentrations, Cl accumulation, and Na/K 

ratio in the first leaf below the flag leaf for 8 genotypes of wheat. 
The salinity levels and wheat genotype were inputs of the neural 
network. A feed-forward back-propagating ANN structure with 
one/two hidden(s) layer as illustrated in Figure 2 was used to 
develop yield and yield components prediction models. Different 
neural networks were made and the optimum values of network 
parameters were obtained by trial and error. In this study, there 
were a total of 32 patterns each with 8 components (Figure 3).  

Two of the components were the input variables (X1 and X2 for 
salinity level and genotype respectively), whereas the last six 
components were the outputs(Y1-Y6 for grains per ear, yield, 1000-

grain weight, K
+
 concentration, Na

+
/K

+
 ratio, Cl- accumulation 

respectively) (Figure 3). These 32 patterns were randomly divided 
into training and testing groups. Twenty one data (67% of the 
experimental data) were used for the training and the remaining, 11 
patterns, were used for testing the networks. Three steps were 
used to select an optimal ANN model. The first step was to work 
with various ANN structures, including 3- and 4-layer with different 
number of neurons in each hidden layer. In order to determine the 
optimal number of hidden neurons in hidden layers, training was 
used for 2-k-s-6 architectures. Where k and s were the numbers of 
neurons in the first and second hidden layers, respectively. 



  
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

Figure 4. The effect Salinity Levels on yield of wheat genotypes. 
 
 

 

The numbers of neurons in the hidden layers were varied from 4 was the software package used in this study. The ANN modeling 
 

to 38, by an increment of 2 in each step. The best three models was accomplished by using the Neural Network Toolbox 
TM

  of the 
 

were selected on the basis of the lowest root mean square error on MATLAB computer- aided  design software (The MathWorks Inc., 
 

train and test sets of data. Once a given ANN was trained using the Natick, MA).       
 

appropriate training dataset, its  performance was  then  evaluated         
 

using the testing dataset.          
 

The optimum values of network parameters were obtained on the 
RESULTS 

      
 

basis of the lowest error on train and test sets of data, by trial and       
 

        
 

error.  The  second  step  was  to  work  with  these  three  selected 
Yield 

       
 

models to find optimum activation function. The third step was to        
 

find optimum learning rate and momentum values. The evaluating         
 

method for selecting optimal ANN was based on the minimization of Analysis of variance (ANOVA) showed that salinity levels 
 

deviations  between  predicted  and  observed  values.  The training had significant effect (p<0.01) on yield (Figure 4).  
 

and prediction abilities of the ANN models were compared using  
 

        
 

the root mean square error (RMSE), correlation coefficient, R
2
, and         

 

T statistics (Khazaei et al., 2008a). T value measures the scattering 
1000-grain weight 

     
 

around  the  line  (1:1). When  T  is  close  to  1.0,  a  good  fitting  is      
 

prevailed (Khazaei et al., 2008a). The accuracy of the trained and         
 

tested ANNs was  also evaluated by calculating the relative error ANOVA  Results showed  that salinity levels,  genotype 
 

(Khazaei et  al., 2008a). In  order to achieve fast convergence  to and interaction of salinity levels x genotype had  
minimal  RMSE, the  input  and  output  data  were  normalized  with  

significant effect (p<0.01) on 1000-grain weight. Among  

respect to the corresponding maximum and minimum values. As a  

genotypes, Ho (average 13.13 gr) and Caj*Set (average 
 

result  of  normalization,  all  variables  acquire  same  significance 
 

(importance) during the learning process. It must be pointed  out of 13.15 gr) had the most 1000-grain weight (Table 3). 
 

that  the  same  normalization  process  should  be  used  for  both Data showed that high salinity levels due to decline 1000- 
 

training and prediction data sets to ensure that all the data items lie grain weight  (Figure 5).  In control condition,  among 
 

over the same range.  genotypes, Ler with average 39.84 gr had the maximum  

In the present study, a transformation was performed as follows  

1000-grain weight. In 150 mM salinity, Ax (average 12.30 
 

(Khazaei et al., 2008c):  
 

 

gr) had the most 1000-grain weight among genotypes. In 
 

  
 

XT    0.05  0.9[(XI  − XMIN )/(XMAX  − XMIN )] (5) 
200 mM salinity, Ho (average 10.66 gr) had the highest 

 

1000- grain  weight.  Genotypes  in 250  mM  had no    
  

Where  Xt  is  the  transformation  of  the  data  point  Xi;  X  min  the significant differences (Table 4). 
 

 
 

overall minimum in training and prediction data sets; and X max the  
 

overall maximum in training and prediction data sets.  
 

 Number of grain per ear 
 

 

Results showed that  salinity  (p<0.01)  and  genotypes 
The value of Xt lies between 0.05 and 0.95, corresponding to Xt = X 
min and Xt = X max, respectively. The Matlab software, version 7, 



 
 
 

 

Table 3. Mean comparison of genotype effects on yield, number of grain per ear, K
+
 concentrations, Na

+
/ K

+
 ratio and 1000-grain weight.  

 
 Wheat 

Yield (g) 
1000-grain Number of K+ concentrations (mgr 100- Na+/ K+ Cl- accumulation (mgr 100- 

 

 
genotypes weight (g) grain per ear 1gr biomass) ratio 1gr biomass)  

  
 

 Caj × Set 0.52
a
 13.15

a
 10.16

abc
 0.53

bcd
 2.79

b
 1.73

abc
 

 

 Caj × Ho 0.38
a
 8.98

ab
 10.41

ab
 0.44

d
 4.83

a
 2.39

a
 

 

 Caj × Ler 0.43
a
 9.41

ab
 11.66

ab
 0.55

abc
 3.20

ab
 2.22

ab
 

 

 Ax 0.45
a
 11.96

ab
 7.66

bc
 0.65

a
 3.64

ab
 2.01

abc
 

 

 Set 0.43
a
 10.96

ab
 11.33

ab
 0.61

ab
 3.12

ab
 2.07

ab
 

 

 Ho 0.42
a
 13.13

a
 13.33

a
 0.61

ab
 2.89

b
 1.70

abc
 

 

 Ler 0.40
a
 6.34

c
 7.08

c
 0.49

cd
 3.49

ab
 1.67b

c
 

 

 Caj 0.53
a
 9.38

bc
 9.66

abc
 0.55

abc
 1.78

c
 1.34

c
 

 

 
Means followed by similar letter in each column are not significantly different at 5% probability level using DMRT.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. The effect of salinity levels on 1000-grain weight of wheat genotypes. 



 
 
 

 

Table 4. The interaction between Salinity levels × Wheat genotypes on 1000-grain weight and K
+
 concentrations in the first 

leaf below the flag of wheat genotypes.  
 

Salinity levels (Mm) Wheat genotypes K
+
 concentrations (mgr 100

-1
gr biomass) 1000-grain weight (gr)  

 
 
 

 

0 
 
 
 
 
 
 
 
 
 
 

150 
 
 
 
 
 
 
 
 
 
 

200 
 
 
 
 
 
 
 
 
 
 

250 

  
Caj × Set 1.275

ab
 34.452

a
 

Caj × Ho 1.273
ab

 33.588
ab

 

Caj × Ler 1.070
ab

 28.266
ab

 

Ax 1.232
ab

 35.548
a
 

Set 1.322
a
 31.998

ab
 

Ho 1.317
a
 32.067

ab
 

Ler 0.947
b
 39.840

a
 

Caj 1.337
a
 30.691

ab
 

Caj × Set 0.272
d
 7.900

cd
 

Caj × Ho 0.356
cd

 8.855
cd

 

Caj × Ler 0.359
cd

 5.180
cde

 

Ax 0.405
cd

 12.305
bc

 

Set 0.430
cd

 6.227
cd

 

Ho 0.406
cd

 9.810
c
 

Ler 0.337
cd

 3.033
def

 

Caj 0.558
cd

 6.103
cde

 

Caj × Set 0.281
d
 10.020

cd
 

Caj × Ho 0.347
cd

 10.600
cd

 

Caj × Ler 0.388
cd

 4.205
cde

 

Ax 0.605
c
 0

g
 

Set 0.346
cd

 5.617
cde

 

Ho 0.405
cd

 10.667 
c
 

Ler 0.360
cd

 0.000 
g
 

Caj 0.425
cd

 0.737 
fg

 

Caj × Set 0.286
d
 0

g
 

Caj × Ho 0.357
cd

 1.867
efg

 

Caj × Ler 0.397
cd

 0
g
 

Ax 0.347
cd

 0
g
 

Set 0.339
cd

 0
g
 

Ho 0.307
d
 0g 

Ler 0.311
d
 0

g
 

Caj 0.322
cd

 0
g
   

Means followed by similar letter in each column are not significantly different at 5% probability level using DMRT. 
 

 
(p<0.05) had significant effect on Number of grain per 

ear. With an increase of salinity levels the number of 
grains decreased (Figure 6). 

 

K+ concentrations 
 
The salinity levels, genotype and interaction of salinity 
levels x genotypes had a significant effect (p<0.01) on K+ 
concentrations. Trend of K+ concentrations in the first leaf 
below the flag showed that increased salinity cause a 
decrease in K+ concentrations (Figure 7). Among 
genotypes, Ax (0.65 mg 100-1 gr biomass) had the maxi-

mum K
+
 concentrations (Table 3). In control condition, 

 
 
 
Caj genotype (1.337 mgr 100-1gr biomass) had the 

highest K
+
 concentrations. In 150 mM applied NaCl, 

among genotypes Caj (with 0.558 mgr 100-1gr biomass) 

had the highest K
+
 concentrations. In 200 mM NaCl, Ax 

with 0.605 mgr 100-1gr biomass had the highest K
+
 

concentrations. In 250 mM applied NaCl, among 
genotypes Caj x Ler (with 0.397 mgr 100-1gr biomass) 
had the highest K+ concentrations (Table 4). 
 

 

Na+/ K+ ratio 

 

Analysis  of  variance  showed that  salinity levels and 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. The effect salinity levels on number of grain per ear of wheat genotypes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. The effect of salinity levels on K+ concentrations in the first leaf below the flag of wheat 
genotype. 

 

 

genotypes (p<0.01) had significant effect on Na
+
/ K

+
 ratio. 

 
 

Cl- accumulation 

 

Salinity levels (p<0.01) and genotype (p<0.05) had 
significant effect on Cl- accumulation. Among genotypes, 
Caj x Ho with means 2.39 mgr 100-1gr biomass had the 

 
 

 

maximum Cl- accumulation (Table 3). With increase of 
salinity levels Cl- accumulation increased in a linear 
manner (Figure 9). 
 

 

Artificial neural network modeling 

 

Results  showed  that  back  propagation  artificial  neural 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. The effect salinity levels on Cl- accumulation in the first leaf below the flag leaf of wheat genotypes. 

 
 

 
Table 5. The best structure and optimum values of the ANN used to predict the wheat seed yields and yield components.  
 
 MLP structure Optimum Transfer function RMSE training RMSE testing T Epoch   ×1000 

 

  Learning rate Momentum      
 

 
2-28-6 0.7 0.2 

Tanh in hidden layer and sigmoid in 
0.031 0.047 0.97 15  

 
output layer  

        
 

 
 

 

networks had a good ability for creating of nonlinear 
mapping between salinity level and wheat yield, number 

of grain per ear, 1000-grain weight, CL
-
 concentrations, 

K
+
 concentrations, and Na

+
/K

+
 ratio in the first leaf below 

the flag leaf for 8 wheat genotypes. Among the various 
ANN structures, model of good performance was 
produced by the 2-28-6 structure with hyperbolic tangent 
transfer function in the hidden layer and Sigmoid in the 
output. We decided to employ the single hidden layer 
ANN structure, as it was capable of handling nonlinear 
relationships between the input and output variables. 
Table 5 shows the ANN parameters giving the best fits for 
the training data set. As it is seen, the model with 28 
hidden neurons produced the best model performance in 
terms of training RMSE, testing RMSE, and testing T 
value. For the final ANN model, the RMSE between 
predicted and measured data for the six outputs were 
lower than 0.047 (Table 5). Ideally, RMSE values close to 
zero indicate there are no differences between the 
predicted and measured values. Meanwhile, it is also 
evident that the T values are close to 1.0, which indicates 
that the fitting was as desired (Khazaei et al., 2008c).  

Figure 11  shows  the  training  and  prediction  RMSE 

 
 

 
error are represented as a function of number of epochs 
for the final selected ANN structure. As can be seen, the 
training of the model was successfully accomplished. The 
training RMSE proceeded toward the minimum at epochs 
near to 15 x 103. The performance of the final selected 
ANN model for prediction of wheat yield and yield 
components are displayed in Figure 12. Each picture 
show 11 predicted data (test set data) versus the same 
set of measured data, for the final network trained with 15 
x 103 epochs. It can be seen that there was excellent 
agreement between the experimental data and the 
predictions. For all the six outputs, the linear adjustment 
between observed and estimated values gave almost a 
slope practically equal 1. The mean values of RMSE, T 

value, and R
2
 of the ANN model to predict each of the six 

dependent variables of wheat yield and yield components 
are displayed in Table 6. The mean resulting correlation 
coefficient and T values were 0.977 and 0.97, 
respectively for the regression between observed and 
estimated values (Figure 12), indicating that the ANN 
provided satisfactory results over the whole set of values 
for the six dependent variables. Differences between 
observed and predicted means were statistically non 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. Convergence of the root mean square errors during training of the 
final selected ANN. 

 
 
 

significant (P = 0.05).  
In this study, multi-linear regression (MLR) models with 

the salinity level as the input variable was also employed 
to evaluate the results with ANN model. The regression 
models did not predict wheat yield and yield components 
with the same level of accuracy as ANN models (Table 
7). A comparison between the coefficients of 

determination, R
2
, of the ANN model (Table 6) with those 

for the 6 regression models (Table 7) indicates that the 
ANN model, in many cases, has been very close to, or 
even higher, accuracy than regression models in 
predicting the yield and yield components data to wheat. 
 

 

DISCUSSION 

 

Salinity is one of the important stresses affecting plant 
growth and productivity, results of Soltania et al. (2006); 
Mahajan and Tuteja (2005); Faroop and Azam (2005); 
Reddy et al. (2003); Allakhverdiev et al. (2000) confirmed 
our results. The result of Khatun and Flowers (1995) 
confirmed this result; opposite of Na+ and Cl- at all levels 
of applied salinity, where they were minimal, K+ 
concentration was maximal in the flag leaf. Results of 
Katerji et al. (2005); Faroop and Azam (2005); Francois 
et al. (1986) were similar to these results; their results 
confirmed that salinity caused to decrease grain yield. 
Among genotypes, Ho and Ler had the maximum and 
minimum Number of grain, respectively (Table 3), similar 
to these results Katerji et al. (2005) showed different 
tolerance of two durum wheat varieties. Similar to this 
results, Faroop and Azam (2005); Marschner (1995); 

 
 
 

 
Sadat and Harati (2005) showed a negative correlation 

between Na+ and K+ concentration. Increase of Na
+
 

result a decrease in K+, since K+ is an important element 
for protein synthesis and enzyme activation (Marschner, 
1995), plants can't tolerate salinity stress. With increase 

of salinity levels, Na
+
/ K

+
 ratio in the first leaf below the 

flag increased (Figure 8), similar results were observed 
by Yang et al. (2002) and Botella et al. (1997). Among 

genotypes, Caj x Ho had the maximum Na
+
/ K

+
 ratio 

(Table 3). Maintaining a low Na
+
/K

+
 ratio is one of the 

determinants of plant salt tolerance (Zhu et al., 1998). 
Analyzing the impacts of number of hidden neurons on 
the training and prediction performance of the ANN model 
showed that as the number of hidden neurons increased, 
the training accuracy improved.  

The prediction performance was optimum when 28 
neurons were used in the hidden layers (Figure 10). 
However, no improvement in the prediction performance 
was noticed when the number of neurons in the hidden 
layer was increased beyond 28. The reason for this may 
be attributed to the memorization of training data by 
networks with too many neurons. In back-propagation 
networks, the number of hidden neurons determines how 
well a problem can be learned. If too many are used, the 
network will tend to try to memorize (also called 
overtraining) the problem, and thus not generalize well 
when presented with test data sets. If too few are used, 
the network will generalize well but may not have enough 
power to learn the patterns well. There is no formal 
procedure to determine number of hidden neurons. 
Typically, it is determined by a combination of previous 
expertise, amount of data available, dimensionality, 
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Figure 12. Comparison between the observed value and that predicted by the artificial neural network for. a) number of 
grain per ear and b)K+ concentration, c) NA+/K+ ratio, d)Cl- concentration, e) Yield , f) 1000-grain weight. 

 

 

complexity of the problem, and trial and error. The results 
showed that epoch size directly affected the learning 
ability of the network. The training and testing data sets 

followed a very similar trend up to a 15 × 10
3
 epochs. At 

that point, overfitting (‘‘memorizing’’ of data) started to 

 
 

 

occur and the prediction errors for the two data sets 
diverged, continuing to decrease for training data, but 
increasing for testing data as previously reported in the 
literature (Haykin, 1994). Anyway, the optimal network 

was found at 15 × 10
3
 epochs. 



 
 
 

 

Table 6. The mean values of RMSE, T value, mean relative error, and R
2
 of the ANN model to predict yield and yield 

components to wheat.  

  RMSE T value Mean relative error R2 

 K
+
 concentrations (mg 100

-1
g biomass) 0.053 0.975 -0.086 0.988 

 Na
+
/ K

+
 ratio 0.047 0.961 -0.038 0.962 

 CL
-
 concentration 0.048 0.957 0.022 0.960 

 Number of grains /Ear 0.050 0.973 -0.154 0.978 

 1000-grain weight, g 0.053 0.968 -0.052 0.986 

 Yield, g 0.036 0.986 -0.110 0.990  
 
 

 
Table 7. Six regression models to predict six yield and yield components parameters to wheat.  

 

  MLR Model RMSE Mean relative error R
2
 

 K
+
 concentration (mg 100

-1
g biomass) y=-0.6391Ln(x)+1.0926 0.14 0.11- 0.816 

 Na
+
/ K

+
 ratio y=3.5246Ln(x)+0.3474 0.71 -3.5 0.897 

 CL
-
 concentration y=1.6233Ln(x)+0.6397 0.2 0.0109 0.986 

 Number of grains/Ear y=280.03e
-1.8401x

 0.82 0.041 0.893 

 1000-grain weight, g Y=5.231X
2
-36.292X+63.037 0.29 -0.77 0.946 

 Yield, g Y=2.5335 X
-5.2887

 0.47 0.31 0.886  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The effect of Salinity Levels on Na+ K+ ratio in the first leaf below the flag of wheat 
genotypes. 

 
 

 

The result implied that the designed ANN was able to 
properly learn the relationship between the input and 
output parameters. In fact, a well-trained ANN model is 
the key to design and analysis input and output relations. 
Means were thus accurately predicted in a wide range of 
number of input vectors and output variables. The small 
difference between measured and predicted data 
provides a clear insight into the generalization ability of 

 
 
 

 

ANN models. These results also confirm the fact that a 
properly trained ANN model (in this study a 2-28-6 ANN 
structure) is able to predict simultaneously more than one 
dependent variables (Table 5 and Figure 12), unlike 
traditional mathematical models where one regression 
was required for each dependent variable (Table 7). This 
ability of ANNs could significantly reduce the computation 
time and the amount of practical work required to build 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Effect of the number of hidden neurons on the mean RMSE errors 
for training and testing data. 

 

 

the mathematical models. Moreover, as it was explained, 
a single ANN model had better predictions performances 
than the six regression models for the noisy experimental 
data (Tables 6 to 7). Hence, it is recommended that 
ANNs can potentially be used as an alternative technique 
to predict noisy yield and yield components data in 
agriculture.  

The results showed that for the ANN model trained by 
15 x 103 epochs the mean value of the relative errors 
was -0.069, which indicates a good model performance. 
These results show that the network successfully learned 
the relationship between the input factors and wheat yield 
and yield components as output for all range of data. This 
indicates that the ANN model used in this study can 
potentially be used to estimate yield and yield 
components of agricultural products. This indicates that 
the obtained ANN model can assuredly replace the 
mathematically constitutive models for yield and yield 
components prediction, since it takes acceptable 
performance into account with experimental data and 
automatically improves itself through learning. Figure 13 
shows the relationship between the relative errors and 
values estimated by the ANN model for all the six 
outputs. It is clear that the slope of correlation between 
estimated data and residuals were close to zero. The 
residuals were well distributed on either side of the 
horizontal line (ordinate) representing the residual mean. 
Some over- and under-estimates of some weak values 
were possibly observed. This was the consequence of 
the scarcity of high and low values in the database for an 
effective learning of the model. The results obtained from 
this study showed that, the network parameters affected 
the ANN significantly. The learning rate and momentum 
term were adjusted to yield a model with the least error. 

 
 

 

As clear from Table 5, a large learning rate and smaller 
momentum were desirable so that the achieved result 
was as precise as possible.  

Figure 14 shows the effects of the learning rate and 
momentum value on the RMSE. It is evident that, as the 
learning rate was increased the RMSE tended to drop. It 
was revealed that the learning rate ranged from 0.1 to 0.5 
tended to produce larger RMSE, while values ranged 
from 0.6 to 0.9 were quite similar and tended to give 
smaller errors. This indicates that in this range the 
necessary weight adjustments were appropriate. 
However, at this range of learning rate, the effect of 
different values of momentum in the range of 0.1 to 0.3 
on the performance of the networks was negligible. The 
optimized values of learning rate and momentum were 
0.7 and 0.2, respectively. 
 

 

Conclusions 

 

An ANN approach was successfully applied to predict six 
yield and yield components of wheat by considering the 
effects of the salinity level and wheat genotype. The 
comparison of the ANN predictions with the experimental 
measurements was satisfactory. It was found that a 
single ANN model had better predictions performances 
than six regression models for the noisy experimental 
data. These results confirm the fact that a properly 
trained ANN model (in this study a 2-28-6 ANN structure) 
can be used to predict simultaneously more than one 
dependent variables, unlike traditional regression models 
where one regression is required for each dependent 
variable. This ability of ANN models could significantly 
reduces the computation time and the amount of practical 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Error distribution of the ANN model for the prediction of the wheat seed yields 
and yield components. 

 

 

work required to build the mathematical models. Hence, it 
is recommended that ANNs can potentially be used as an 
alternative technique to predict noisy yield and yield 
components data in agriculture. 
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