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In the present investigation, a numerical study of the flow and heat transfer analysis of viscoelastic 
second grade fluid due to heated, continuous stretching of a vertical sheet has been carried out. The 
stretching velocity is assumed to vary linearly with the distance measured from the leading edge. The 
surface heat flux is assumed to be varied in power of distance measured from the leading edge. The 
governing differential equations are transformed by introducing proper non-similarity variables and 
solved numerically using two different methods, namely, the local non-similarity method with second 

level of truncation and the implicit finite difference method for values of ξ (=Grx/Rex
2
) ranging from 0 to 

10. The comparisons of the results obtained by the aforementioned methods are found in excellent 
agreement. Effects of the viscoelastic parameter, λ (Deborah number) on the skin-friction and the heat 
transfer coefficients have been shown graphically for the fluid with Prandtl number equal to 0.7, 7.03 
and 15.0. 
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INTRODUCTION 
 
Recently, Mushtaq et al. (2007) explored the effects of 
thermal buoyancy on flow of a viscoelastic second grade 
fluid past a vertical, continuous stretching sheet of which 
the velocity and temperature distributions are assumed to 
vary according to a power-law form. In the present 
investigation we have analyzed the mixed convection flow 
of the same fluid along a continuously stretched vertically 
placed heated surface subject to non-uniform surface 
heat flux.  

In actual practice, the flow of viscous incompressible 
fluid over a continuous material moving through a 
quiescent fluid is induced by the movement of the solid 
material and by thermal buoyancy. Therefore, these two 
mechanisms, surface motion and buoyancy force, will 
determine the momentum and thermal transport 
processes. The thermal buoyancy force arising due to the 
 
 

 
*Corresponding author. E-mail: sudias2011@yahoo.com 

 
 
 

 
heating or cooling of a continuously moving surface may 
alter significantly the flow and thermal fields and thereby 
the heat transfer behavior in the manufacturing process. 
The literature survey shows that, a continuously moving 
surface through a quiescent medium has many 
engineering applications; such as hot rolling, wire 
drawing, spinning of laments, metal extrusion, crystal 
growing, continuous casting, glass fiber production, and 
paper production (Altan et al., 1979; Fisher, 1976; 
Tadmor and Klein, 1970). On the other hand, Karwe and 
Jaluria (1988, 1991) showed that the thermal buoyancy 
effects are more prominent when the plate moves 
vertically, that is, aligned with gravity, than when it is 
horizontal. In their analysis, they treated the mixed 
convection flow of aforementioned fluid over a continuous 
plate moving at a uniform speed, which may have 
applications in material processes, such as hot rolling, 
extrusion, and drawing. The numerical solution for the 
boundary layer flow was first presented by Sakiadis 
(1961). Later on, Magyari et al. (2001) and Magyari and 
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Keller (2000) reported numerical solution for rapidly 
decreasing velocity using self-similar method and the 
analytical solution for permeable surface moving with a 
decreasing velocity. Chen and Strobel (1980) dealt with 
the problem of combined forced and free convection flow 
of viscous incompressible fluid in boundary layers 
adjacent to a continuous horizontal sheet maintained at a 
constant temperature and moving with a constant 
velocity. Ingham (1986) investigated the existence of the 
solutions for the free convection boundary-layer flow of 
viscous fluid near a continuously moving vertical plate 
with temperature inversely proportional to the distance up 
the plate. Ali and Al-Yousef (1998) have investigated the 
problem of laminar mixed convection flow adjacent to a 
uniformly moving permeable vertical plate. Also, an 
analysis of mixed convection heat transfer from a vertical, 
continuously stretching sheet has been presented later 
on by Chen (1998). All the previous investigations were 
confined to the case of Newtonian fluid only.  

In recent years non-Newtonian fluids, such as, Walter’s 
fluid (Walters, 1962) or the viscoelastic second grade 
fluid, have become increasingly important from the point 
of industrial applications; for example, in certain polymer 
processing, one deals with flow of a non-Newtonian fluid 
over a stretching surface; since, these fluids show 
viscoelastic behavior, meaning that very short part of the 
history of the deformation gradient has an effect on the 
stress. In an incompressible fluid of differential type, apart 
from a constitutively indeterminate pressure, the stress is 
just a function of its velocity gradient and some number of 
its higher-time derivatives. These fluids do not exhibit the 
phenomenon of stress relaxation which means that with 
the instantaneous cessation of all local motion, the stress 
becomes pure pressure. Issues concerning the status of 
second grade fluid were discussed by Dunn and 
Rajagopal (1995).  

Steady flow of a viscoelastic second-order fluid past a 
stretching sheet was investigated by Rajagopal et al. 
(1984). Bhattacharyya et al. (1998) studied the 
temperature distribution in the steady boundary layer flow 
of a second-order fluid past a stretching surface. Later, 
Chen et al. (1990) studied the flow and heat transfer in 
the boundary layer of a viscoelastic second grade fluid 
over a stretching surface subject to either constant 
temperature or uniform heat flux.  

In the present investigation, we have analyzed the 
mixed convection flow of viscoelastic second grade, fluid 
along a heated and continuously moving surface subject 
to non-uniform surface heat flux. We further assume that 
the surface velocity is proportional to x and the wall heat 

flux is proportional to x
m

, where x measures the distance 
from the leading edge of the stretched surface. The 
dimensionless boundary layer equations that govern the 
flow and heat transfer are transformed to local non-
similarity equations using suitable transformations which 
are then solved numerically applying (i) the local non-
similarity method as well as (ii) the implicit finite 

 
 
 

 
difference method. The numerical results thus obtained 
are presented in terms of local skin-friction and local 
Nusselt number for different values of the physical 

parameters, such as, the viscoelastic parameter,  (also 
known as the Deborah number) and for Prandtl number, 

Pr, choosing the values of  within the range of 0 to 10. 

Conjugate effects of the viscoelastic parameter  as well 

as the local mixed convection parameter  on the velocity 
and temperature field have also been shown graphically. 
 
 
FORMULATION OF THE PROBLEM 
 
We consider a steady two-dimensional mixed convection flow of a 
viscoelastic second grade fluid along a vertically stretching flat 

surface subject to variable heat-flux proportional to x
m

, that is, 

qw(x)=q0(x/L)
m

, where x measures the distance from the leading 
edge of the plate and m is a real number. The flow configuration is 
shown in Figure 1, in which y measures the distance from the 
surface in the direction normal to x. The ambient temperature is 
assumed to be, T, constant. Here u and v are the x- and y-
components of the fluid velocity and T being the temperature of the 
fluid in the boundary layer region. Finally, the stretching velocity is 
assumed to be a linear function of x, that is, Uw(x)=U0(x/L). Under 
the usual Boussinesq approximation, the governing dimensionless 
boundary layer equations for the conservation of mass, momentum 
and energy are given in Equations 1 to 3: 
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The aforementioned dimensionless equations are being obtained 
by introducing the following dependent and independent 
dimensionless quantities; 
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Where,  u,   v,  T  are  the  dependent  variables and     is 
  

dimensionless temperature at the surface of the plate. The 
dimensional U0 and q0 are prescribed constants, m is the exponent 
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With the aforementioned transformation corresponding boundary 
conditions, Equations 4 and 5 will turn into: 
 

f 0,  0, f '0, 1,  f ',  0 (11) 
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Where, a prime denotes differentiation with respect to η. 
 
In the case of local mixed convection parameter  = 0 and surface 
heat flux exponent m = 2, Equations 9 to 12 will take the following 
form: 
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Figure 1. The flow configuration and the coordinate system. 

 
 

 
and T is the temperature of the ambient fluid. Further, Ri is the 
Richardson number together with Equation 7 as the Reynolds 
number and the modified Grashof number for the heat-flux case. 

Further, in Equation 2,  = KReL/L
2
 denotes the viscoelastic 

parameter (or Deborah number): 
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It can be seen that Equations 1 to 3 admit self-similar solution and 
hence we may introduce the following free group of transformations: 
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Equations 13 to 16 have become well-known equations that govern 
the flow of second grade viscoelastic fluid and heat transfer in the 
boundary layer region along a stretching sheet with power law 
surface heat flux. A similar problem had been investigated by Liu 
(2005).  

Following the methodology used by Liu (2005), the analytical 
solutions of Equations 13 to 16 are obtained as shown:  
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Equations 2 and 3 can be written in the following dimensionless                 
 

form:                                 
 

  1 rs  

 
 r sM 

 

  
 
 

 
 

 
 

 

     

 
 

 
 

 1  
 

    e M s  2, s 1, se s  2, s 1, s  s s  2 M s 1, s  2, s / s 1    

     

  r                    
 

                                

Where:                                
 

          
n 
         (a) n =a(a 1)(a  2)...(a  n -1) 

 

               

(19)                 
 

M a, b, z  1  a n / b n z  / n!                     
 

         

1 
         

 

       n1             
r =   

,  s=Pr (1+)  

                           

                        

 

  

is the Kummer’s function, and: 
            

1  
  

                     
 

                         
  

 

 
(17) 
 
 
 

 
(18) 
 
 
 
(20) 

 
(21) 



Nassar et al.         193 
 
 

 
The skin-friction coefficient, f″(0), and the heat transfer coefficient, 
1/(0), are found to be: 
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The numerical values of 1/(0) obtained using Equation 23 and also 
obtained by the implicit finite difference method (discussed 
subsequently) at selected values of viscoelastic parameter  and 
Prandtl number Pr are entered in Table 2. From this table, it can be 
seen that the present numerical values are in excellent agreement 
with that of Liu (2005); since, the maximum difference between 
these two results is less than 0.5%. 

 
SOLUTION METHODOLOGIES 
 
As a first attempt, we employ the local non-similarity method of 
Sparrow and Yu (1971) in finding the solutions of Equations 9 to 12 

by treating the local variable  as the non-similar parameter. 

Solutions for all  are then obtained by the implicit finite difference 
method together with Keller-box elimination technique (Keller, 1978) 
as well. Shot description of the aforementioned methods will be 
provided subsequently. 

 
Local non-similarity method 
 
With the exception of a few specially proposed boundary conditions 
(Sparrow and Gregg, 1958; Semenov, 1984), the vertical free 
convection boundary layer problems are normally locally non-
similar. The local similar method reduces the coupled partial 
differential equations into a set of nonlinear ordinary differential 
equations to be solved numerically. However, the error introduced 
by this technique cannot be easily estimated. Sparrow et al. (1970) 
introduced the local non-similar method to improve this concept. 
However, like the local non-similar method, this technique is locally 
autonomous. Solutions at any specified stream wise station can be 
obtained without first obtaining upstream solutions. Keller and Yang 
(1972) employed a Görtler-type series to study the free convection 
boundary-layer flow along a non-isothermal vertical plate assuming 
that the wall temperature can be represented by a power series in 
the stream wise coordinate. Later, Kao et al. (1977) proposed the 
method of strained coordinates for the computation of the wall heat 
transfer parameter for a plate with an arbitrary prescribed surface 
temperature. In this method, the coordinate along the plate was 
transformed by using an integral function of the specified wall 
temperature so that the problem can be solved with any specified 
surface conditions. The non-similar solution can then be obtained 
for the local similarity solution by determining an approximate 
wedge parameter in such a way that the local similarity results give 
a value that would be obtained if one considers the local non-
similarity solution method. Following this technique, the 
determination of the approximate wedge parameter involves an 
estimation and iterative procedure. Further, Yang et al. (1982) 
proposed an alternative method to evaluate the surface heat 
transfer rate and the wall shear stress for free convection boundary-
layer flow considered by Kao et al. (1977) using a Merk-type series 
solution (Merk, 1959). The governing coupled partial differential 
equations in Kao et al. (1977) were transformed into a sequence of 
coupled ordinary differential equations which were then solved 
numerically by a fourth-order Runge-Kutta scheme with an 
incorporated least-squares convergence criteria for the zeroth-order 
solution and with the Newton-Raphson iteration scheme for higher-
order solutions. 

 
This section is concerned with the local non similarity method 

initiated by Sparrow and Yu (1971) and Minkowycz and Sparrow 
(1978) which has later been applied by many investigators such as 
Mushtaq el al. (2007), Hossain and Takhar (1996), Hossain et al. 
(1994) and Chen (1988). Formulation of the system of equations for 
the present local non similarity model, with reference to the present 
problem, will be demonstrated subsequently. 

 
First level of truncation 
 
At the first level of truncation, the terms of the form ( )/  are 
deleted from the right hand side of Equations 9 and 10 (Sparrow 
and Yu, 1978) to yield the following system of equations:  
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It can be seen that Equations 24 and 25 can be regarded as a 
system of ordinary differential equations for the functions f and  
with  as a parameter for a given Prandtl number Pr and a 
viscoelastic parameter . 

 
Second level of truncation 
 
To find the higher level of truncation, we introduce the following 
functions: 
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For the second level, the governing Equations 9 and 10 are 
retained in full as:  
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                central difference approximations are made such that the equations 
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the lower stagnation point solution it is possible to march step by 
 

obtained  by  the  implicit  finite  difference  method  discussed  
 

                

subsequently and an excellent agreement is achieved.     step along the boundary layer. For a given value of , the iterative 
 

                         procedure is stopped when the difference in computing the velocity 
 

                         and the temperature in the next iteration is less than 10 5
, that is, 

 

Implicit finite difference solutions               when  f i  10 5 ,  where  the  superscript  denotes  the  iteration                  
 

                         number. The computations were not performed using a uniform grid 
 

The governing Equations 9 and 10 are revisited and the numerical  in the  direction, but a non-uniform grid was used and defined by i 
 

solution  is  initiated  using  Keller  Box  scheme.  We  recast  these  = sinh((i-1)/p), with i = 1, 2, ,301 and p = 100.  
 

equations into a set of simultaneous equations by introducing the                
 

variables U, V, W and P:                                
 

 

f  F ,  F  G,  G H ,   P       
 

G fG  F 
2
   2FH G 

2
  fH     

 

                 
 

 m 1  

F F G f 


F H  H F  G G  H f  

 

      

                
 

            
 

1 P fP  mF   m 1  F  P f  
 

  

  
Pr 

  
 

   

     
 

 

f 0,    0,   F 0,   1,   P0,   1 
 

F ,    0,   ,    0 

 
We now place a net on the (, ) plane defined by: 

RESULTS AND DISCUSSION  
(37)  

In the present investigation, two distinct methodologies 
were used to obtain the solution of the problem on mixed 
convection flow of viscoelastic second grade fluid along a 
non-isothermal stretched vertical surface. The physical  

(38) parameters that control the flow and heat transfer are the 
Prandtl number, Pr, the viscoelastic parameter, , and 
the local Richardson number (also termed as the local 
mixed-convection parameter), . Due to the presence of   

(39) this local variable, , the governing equations for the flow and 
heat transfer appeared as non-similarity equations.   
For values of, , in the range of 0 to 10, the solutions are 
obtained by employing the local non similarity method   (40) and the implicit finite difference method. Once the functions f 
and  and their derivatives are known, the 

  

(41) important physical quantities, such as, the wall shear 
stress and the surface heat flux can be determined 
easily. The wall shear is expressed in terms of the local 
skin friction coefficient as:   

  0,    h , i 1,2,3,..., M 
C fx   2w ( x) / (U w ( x)) 

2 (42) 
 

0 ii 1 i    
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Table 1. Numerical values of f'(0,) and 1/(0,) obtained by local non-similarity method and implicit finite difference 
method against ξ when Pr = 0.70,  = 1.0 and m = 2.0. 

 
 

ξ 
 f'(0,)  1/(0,) 

 

 

LNS FDM LNS FDM  

  
 

 0.00 -1.43788 -1.43764 1.02730 1.02730 
 

 0.25 -1.23718 -1.22929 1.06312 1.06263 
 

 0.50 -1.08240 -1.08563 1.08836 1.08674 
 

 0.75 -0.95084 -0.94250 1.10858 1.10619 
 

 1.00 -0.83465 -0.83850 1.12573 1.12274 
 

 1.25 -0.72974 -0.72161 1.14074 1.13727 
 

 1.50 -0.63357 -0.63629 1.15415 1.15029 
 

 1.75 -0.54446 -0.53821 1.16632 1.16212 
 

 2.00 -0.46119 -0.46150 1.17749 1.17299 
 

 2.50 -0.30882 -0.30727 1.19748 1.19247 
 

 3.00 -0.17144 -0.16924 1.21504 1.20961 
 

 4.00 0.07035 0.07249 1.24503 1.23893 
 

 5.00 0.28018 0.28207 1.27021 1.26361 
 

 6.00 0.46685 0.46834 1.29203 1.28507 
 

 7.00 0.63584 0.63673 1.31134 1.30408 
 

 8.00 0.79079 0.79096 1.32871 1.32116 
 

 9.00 0.93428 0.93366 1.34451 1.33668 
 

 10.00 1.06555 1.06544 1.35551 1.35081 
 

 
 
 
And the local Nusselt number as:         Table 2 shows the comparison of analytical values of 

 

                 the local Nusselt number, Nux, using the methodology 
 

N  q ( x) x / k (T T )          (43) employed  by  Liu  (2005)  and  those  of  present  work 
 

ux  w  w             obtained  by  the  implicit  finite  difference  method  at  

                 
 

Where: 
               selected values of  and Pr when local mixed convection 

 

               parameter ξ = 0 and surface heat flux exponent m = 2.  

                 
 

  
 u  

 
 

2
 u 

  


2
u 

  
u u  

 The   numerical   values   of   the   local   skin-friction 
 

   

 v 
   coefficient, 0,  and local heat transfer coefficient, 

 

w ( x)     u 
   

2  2 
 

 (44) 1/0 for Pr = 0.70,  = 1.0 and m = 2.0 obtained 
 

xy y x y 
 

   
y
y0       y0  against local mixed convection parameter ξ in [0.0, 10.0]  

                  

                 by the aforementioned methods are entered in Table 2. 
 

And:                 The results thus found are almost identical for all ξ in [0.0, 
 

                 10.0]. Henceforth, the results discussed in the following 
 

(T T ) /(T  T ) ,  
 

/  
 
0, 

 
  (45) paragraphs are due to implicit finite difference method 

 

  w           only.    
 

                     

Using Equations 42 and 43, we can express the local 
As a  benchmark, the solution  of Equations 13  to16 

 

obtained by the present authors is compared with the one  

skin-friction, Cfx as: 
            

 

            obtained by Chen et al. (1990) in Figure 2a and b as our  

                  

Re
1/

x 
2
 C fx   2(1  3) f 0,  

        special case when  = 0 and m =1. It can be seen that 
 

       (46) these two results are in complete harmony with those 
 

                 presented in Chen et al. (1990).  
 

And the local Nusselt number as:             
 

1/ 2  

1/  0,  . 

          Effect  of physical  parameters  on  skin-friction  and 
 

Re x  
N

ux          (47) Nusselt number    
  

The results are obtained in terms of local skin-friction and 
local Nusselt number against the mixed convection  
parameter  using the relations given in Equations 46 and 
47. 

 
Numerical values of the local skin-friction coefficient as 
well as local heat transfer coefficient are depicted, 
respectively, in Figure 3a and b against , while values of 
Pr equal to 0.70, 7.03 and 15.0 and that of  = 1 and m = 
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Table 2. Comparison of analytical (Liu et al., 2005) and numerical values (present work) at selected 
values of  and Pr when ξ = 0 and m = 2. 

 
  

 Pr 
     1 / (0)     

 

    

Liu (2005) 
  

Present 
  

 

          
 

   0.70   1.06932   1.06933   
 

  0.0 7.03   3.98056   3.98047   
 

   15.00   5.93201   5.93169   
 

   0.70   1.15164   1.15126   
 

  1.0 7.03   4.05531   3.89170   
 

   15.00   6.00567   5.83579   
 

   0.70   1.18707   1.18264   
 

  2.0 7.03   4.08805   3.60160   
 

   15.00   6.03805   5.65077   
 

 4.0       4.0      10  

              
 

   (Chen [32]) Pr = 0.7          
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Figure 2. Numerical values of (a) Rex


Cfx/2, local skin-friction coefficient and (b) Rex


Nux, local 

heat transfer coefficient against  at selected values of Pr while  = 0 and m =1. 
 
 

 
2.0. It may be observed that, for the given value of Pr, 
owing to increase in the value of local mixed convection 
parameter , there is increase in both the local skin-

friction Rex


Cfx/2 and the local heat transfer coefficient, 

Rex


Nux, which is expected, since in the downstream 
region the flow is dominated by the buoyancy force rather 
then the stretching rate of the plate. We further observe  
that increase in the value of Rex


Cfx/2 is faster than that of 

Rex


Nux at a given value of Pr. From the same figure  
it may be noticed that, for an increase in Pr, the value of 

the local skin-friction coefficient, Rex


Cfx/2, decreases 
where as there is increase in the value of the local heat 

transfer coefficient, Rex


Nux. Now, we discuss the 
effect of the Deborah number () on the local skin-friction 

 
 
 
coefficient, Rex


Cfx/2 and the local heat transfer 

coefficient, Rex


Nux. Numerical values of the local skin-

friction coefficient, Rex


Cfx/2 and the local heat transfer 

coefficient, Rex


Nux are depicted, respectively, in Figure  
4a and b for values of  equal to 0.0, 1.0 and 2.0 while 
the fluid’s Pr is 7.03 and surface heat flux exponent m is  
2.0 for   [0, 10]. From these figure one may observe 
that very near the leading edge there is decrease in the 
values of the local skin-friction coefficient and local heat 

transfer coefficient, owing to increase in . On the other 
hand, in the downstream-regime, values of both these 

physical quantities increase with the increase in .  
This is expected, since in the downstream region the 

affect of the elastic property of the fluid get suppressed 



 Nassar et al.         197             
 

  2.0  
Pr 

    6.0       
 

              
 

 
-f

ri
ct

io
n 

co
ef

fi
ci

en
t 

  0.70       
Pr 

    
 

   7.03    

co
ef

fi
ci

en
t 

      
 

 

1.0 
 15.0    5.0  0.70     

 

            

       

7.03      

            
 

         15.0     
 

 0.0      4.0       
 

       3.0       
 

 -1.0      

t r a n s f e r 

       
 

 

s k i n 

             
 

 -2.0      H
e

a
t 2.0       

 

 

L o c a l 

             
 

 -3.0 
2.0 4.0 

 

6.0 8.0 10. 
1.0 

2.0 4.0 
 

6.0 8.0 10. 
 

  0.0 
 

0.0 
 

 

 (a)     (b)      
 

 
Figure 3. Variation of (a) local skin-friction coefficient and (b) local heat transfer coefficient with  at selected 
values of Prandtl number Pr when viscoelastic parameter =1 and surface heat flux exponent m =2. 
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Figure 4. Variation of (a) local skin-friction coefficient and (b) local heat transfer coefficient with  at selected values 
 

of viscoelastic parameter when Prandtl number Pr = 7.03 and surface heat flux exponent m=2.   
 

 
 

 
by the buoyancy force whereas it is strong near the 
leading edge.  

Figure 5a and b illustrate the effect of varying surface 
heat flux exponent, m, on the local skin-friction 

coefficient, Rex


Cfx/2, and the local heat transfer 

coefficient, Rex


Nux, against local mixed convection 

parameter   [0, 10] for  = 1 and the Pr = 7.03. It can 
be noticed from Figure 5a that owing to increase in the 
surface heat flux exponent, m, the local skin-friction 
coefficient increases and the rate of increase first 

 
 

 
decreases and then increases, away from the leading 
edge. It may be observed from Figure 5b that, owing to 
increase in the surface heat flux exponent, m, the local 
heat transfer coefficient increases near the leading edge. 
From these figure, it can be noticed that both the local 

skin-friction coefficient, Rex


Cfx/2, and the local heat 

transfer coefficient, Rex


Nux increases as moving 
away from the leading edge but increase in local skin-
friction coefficient is higher than that of the local heat 
transfer coefficient. 
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Figure 5. Variation of (a) local skin-friction coefficient and (b) local heat transfer coefficient with  at selected 
values of surface heat flux exponent m when Prandtl number Pr = 7.03 and viscoelastic parameter =1. 

 
 
 

 1.0       
 

       Pr 
 

       0.70 
 

 
0.8 

     7.03 
 

      15.0 
 

p
ro

fi
le

s 

0.6       
 

       
 

V
el

o
ci

ty
 

0.4       
 

       
 

 0.2       
 

 0.0 
1.0 2.0 

 
3.0 4.0 5.0 

 

 0.0 
 

 

(a)      
 

 
 
 
 

1.0     
 

    Pr 
 

    0.70 
 

0.8    7.03 
 

   15.0 
 

p r o f i l e s     
 

0.6     
 

0.4     
 

T e m p e r a t u r e     
 

0.2     
 

0.0 
1.0 2.0 3.0 4.  

0.0 
 

(b)     
 

 
Figure 6. Variation of (a) velocity profiles and (b) temperature profiles against  for selected values of the Prandtl 
number Pr when viscoelastic parameter  = 1.0, surface heat flux exponent m = 2 and local mixed convection 
parameter  = 1. 

 
 

 
Effect of physical parameters on velocity and 
temperature profiles 
 
Dimensionless velocity and temperature profiles are 

shown in Figure 6a and b, respectively, against  for Pr = 

0.70, 7.03 and 15.0 while  = 1,  = 1 and m = 2. It is 

depicted from Figure 6a that as  increases from 0.70 to 
15.0, both the velocity profiles and the momentum 
boundary layer thickness decreases. It is particular to 
note that the velocity profiles become insensitive to 

 
 

 
Prandtl number beyond Pr = 7.03. Also it can be seen 
from Figure 6b that Pr has least effect on the temperature 
profiles as Pr goes higher than 7.03. Owing to increase in 
Pr, both the temperature profiles and the thermal 
boundary layer thickness decrease.  

The effect of increasing value of  on velocity and 

temperature profiles for local mixed convection parameter  
=1, Pr = 7.03 and m = 2 are presented in Figure 7a and b, 
respectively. From these Figure, one can observe that as 

the value of  increases, there is decrease in the 
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Figure 7. Variation of (a) velocity profiles and (b) temperature profiles against  for selected values of the 
viscoelastic parameter  when Prandtl number Pr = 7.03, surface heat flux exponent m = 2 and local 
mixed convection parameter  = 1. 
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Figure 8. Variation of (a) velocity profiles and (b) temperature profiles against  for selected values of surface 
heat flux exponent m when Prandtl number Pr = 7.03, viscoelastic parameter  = 1 and local mixed convection 
parameter  = 1. 

 
 

 
velocity profiles and increase in the temperature profiles 
in the boundary layer regions and that leads to decrease 
and increase in the momentum and thermal boundary 
layer thickness, respectively.  

The velocity profiles seems to be have no effect due to 
increase in m, while Pr = 7.03,  and  = 1 but away from 
the surface it has effect of decreasing velocity as well as 
decreasing momentum boundary layer thickness (Figure 
8a). From Figure 8b, it is observed that both the 

 
 

 
temperature profiles and thermal boundary layer 
thickness decrease owing to increase in m.  

It is known that when  = 0, the velocity profile 
corresponds to pure forced convection flow of the second 
grade fluid along a stretched surface. But with the 

increase in , buoyancy force becomes stronger and 
hence the velocity profile of the fluid increases in the 
thick region near the surface of the plate. It can further be 
observed that buoyancy effects tend to disappear away 
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Figure 9. Variation of (a) velocity profiles and (b) temperature profiles against  for selected values of local mixed convection 
parameter  when Prandtl number Pr = 7.03, viscoelastic parameter  = 1 and surface heat flux exponent m = 2. 

 
 

 
from the surface of the plate (Figure 9a). From Figure 9b, 

we further see that for Pr = 7.03,  and m = 2, owing to 
increase in the mixed convection parameter (local 

Richardson number), , temperature profiles decreases 
whereas the thermal boundary layer thickness seems to 
be remained the same. 
 
 
Conclusions 
 
In the present analysis, we have investigated the mixed 
convection flow of viscoelastic second grade fluid past a 
heated and continuously stretched vertical flat plate, 
numerically. Solutions of the governing equations for 
momentum and energy for the mixed convection regime 
have been obtained using two different methods. Here, 
the numerical results have been provided in terms of the 
local skin-friction coefficient, local heat transfer 
coefficient, and velocity and temperature profiles.  

From the present investigation, the following 
conclusions may be drawn: 
 
1. In the mixed convection regime the values of the local 
skin-friction coefficient and local heat transfer coefficient 
increase with the increase in .  
2. The values of both the skin-friction coefficient and the 
heat transfer coefficients decreases near the leading 
edge owing to increase of , and this behavior is reverse 
in the upstream regime.  
3. Increase in the value of , leads to decrease the 
momentum boundary layer thickness and increase in the 
thermal boundary layer thickness.  
4. Owing to increase in m,  both the temperature and  

 
 

 
thermal boundary layer thickness decrease whereas no 
significant change in velocity profiles.  
5. Both the momentum and thermal boundary layer 
thickness are least sensitive to . 
 
 
List of symbols 
 
Cfx= local skin friction coefficient  
g = gravitational acceleration 

(m/sec
2
) Grx = local Grashof number  

K = kinematic elasticity (= /) 
Nux = local Nusselt number  
P = fluid pressure (Pa) 
Pr = Prandtl number  
qw = heat transfer per unit area at the 

surface Rex = local Reynolds number  
Ri = Richardson number 

T = temperature (C) 
Tw = surface temperature(C) 

T = ambient temperature(C)  
Uw = velocity of the moving surface 
(m/s) u = velocity in x-direction (m/s)  
v = velocity in y-direction (m/s)  
U = dimensionless velocity in x-direction   
V = dimensionless velocity in y-direction 
x, y = Cartesian coordinates (m)   
X,Y = dimensionless Cartesian coordinates  
 
 
Greek symbols 
 

 =  thermal  diffusivity  of  the  ambient  fluid  (k/cp) 
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 = coefficient of thermal expansion of fluid (K

-

1
)  = momentum boundary layer thickness (m) 

T = thermal boundary layer thickness (m)  
 = similarity variable (m)  
 = dimensionless temperature 
 = second grade parameter  
 = viscoelastic parameter (Deborah number) 
 = effective dynamic viscosity (Pa/s)  
 = effective kinematic viscosity (/) 
 = local mixed convection parameter  
 = fluid density at reference temperature 

(T0) w = shear-stress at the surface  
 = stream function (m

2
/s) 
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