Full Length Research Paper

Morphological characterization and reaction of partial purified toxin of sugarcane red rot pathogen *Colletotrichum falcatum* collected from Southern India

*Prema Ranjitham Thangamani¹, Raguchander Thiruvengadam¹ and KalaimaniThillaigovindan²

¹Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore-641003, India. ²Sugarcane Research Station, Tamil Nadu Agricultural University, Cuddalore-607 001, India

Accepted 06 September, 2013

Sugarcane is an important cash crop and used as the chief source of sugar in India. Sugarcane production is challenged by various biotic and abiotic stress among the biotic factors, red rot disease caused by *Colletotrichum falcatum* is a major disease leading to severe reduction in sugarcane production. Morphological studies conducted under in vitro in Potato Dextrose Agar (PDA) showed characteristic variation in their cultural and colony characters which were collected from different places. Based on pathogenicity test the variety Coc671 showed more susceptiblility to all the isolate. The variety Co 86249 resistant to all the isolates except Cf3 which showed intermediate reaction. Toxins from various isolates was extracted from culture filtrate grown in Czapek-Dox yeast (CDY) broth and extracted using ethyl acetate. The ethyl acetate fraction was injected to two different varieties. Among the crude toxins extracted from different isolates, the ethyl acetate fraction from Cf3 showed maximum reddening symptoms on 6th day with 92.3 (% infected area on cane stem) in 200 µl injected samples. Cf3 partially purified toxins when treated in leaves showed maximum reddening area of 70.20 % infected area on leaf in Coc671. Serial dilution of toxin to 10^{-5} showed symptoms in susceptible cultivar whereas no reaction was noticed below 10^{-1} dilution in resistant variety. Thus present study brings the morphological variations and virulence characters of *C. falcatum*.

Keywords: Pathogencity, Coc 671, Co 86249, toxin, Czapek-Dox yeast.

INTRODUCTION

Sugarcane is an economically important crop which is vegetatively propagated in the tropics and sub-tropics which is used as the chief source of sugar and ethanol production.

Sugarcane cultivation is challenged by several biotic and abiotic factors. The most important one is the red rot disease caused by *Colletotrichum falcatum* Went. (Perfect stage: *Glomerella tucumanensis* Speg.). Red rot infection in cane causes a loss of total weight to about 29.07% leading to 30.8% loss in sugar recovery (Hussnain and Afghan 2006) besides reducing the yield attributes it also reduces the juice qualities such as brix value, sucrose content, purity and commercial cane sugar.

The genus *Colletotrichum* has shown wide variations in morphology (Amarjit singh et al., 2006; Prema et al., 2011). Similarly variations in mycelial growth, mycelial dry matter production, mycelial color, texture, topography, acervuli spore initiation. sporulation and germination, appressorium formation and shape of the appressorium were observed in C. falcatum (Viswanathan et al., 2003). Major pathotypes used in screening programme were distinguished at morphological, cultural, serological and pathogenicity level (Viswanathan et al., 2000; 2003). Alexander et al. (1985) and Beniwal et al. (1989), classified C. falcatum isolates in India into different pathotypes based on their differential reaction. Malathi et al. (2010), studied differential interaction of 9 pathotypes indicating that Cf92061 (tropical) and Cf7717 (sub tropical)

^{*}Corresponding Author. E-mail:prema.pathology@gmail.com

were found to be highly virulent types, while Cf64 and Cf767 were least virulent types among all the pathotypes. The toxic metabolites produced by *Colletotrihum* plays a major role in the pathogencity and virulence on sugarcane

(Malathi et al., 2002). Several authors have evaluated phytotoxins as factors in the pathogenesis of Colletotrichum and also determined whether the toxin is host-specific (Alleyne, 2001; Yoshida et al., 2000). The pathogen C. falcatum produces a phytotoxin that reproduces some of the symptoms of the disease (Olufolaji and Bomgboye, 1986; Mohanraj et al., 2002). This phytotoxin also induces an accumulation of phytoalexins (anthocyanidin pigments) in treated canes similar to that caused by the pathogen (Viswanathan et al., 1996). Malathi et al. (2002), reported that C. falcatum is known to produce a phytotoxic metabolite identified as an anthroquinone compound. Therefore, the phyotoxin isolated from Collectotrichum falcatum was tested for its ability to produce lesion on sugarcane tissue similar to the pathogen.

Thus this research looks into morphological variation and virulence among different isolates of *Colletotrichum falcatum*.

MATERIALS AND METHODS

Collection and isolation

In order to find variations of C. falcatum among the different parts of Tamil Nadu, an extensive survey was conducted in major sugarcane growing areas of Tamil Nadu covering Tirunelveli, Sivagangai, Cuddalore, Villupuram districts and also two other state namely Pondicherry and Andhra Pradesh during 2011-2012. Infected canes were split open by sterilized knife and observed for reddish tissue and white transverse band. The red rot pathogen was isolated by tissue segment methods as described by Rangaswami (1958), after 5 days of incubation, the plates having red sporulation were purified by sub- culturing. All the isolates were further purified by single spore dilution technique (Riker and Riker, 1936). The fungus from the pure cultures obtained was examined microscopically in order to match it with the characters of the pathogen examined from the diseased samples. The pure cultures were maintained in Potato Dextrose Agar slants. Five known races of C. falcatum (Cf03, Cf04, Cf05, Cf06 and Cf08) were obtained from Sugarcane Breeding Institute, Coimbatore, India, a total of 30 isolates were used in the study as given in Table 1.

Morphological Characters

Morphological characters of the spores *viz.*, size, color and shape of the conidia were observed. Measurements

of 100 spores were taken under the image analyzer 100 X magnifications. The mean values and the range were determined. In the pathogen, colony color, substrate color, margin of colony and topography were recorded through naked eye.

Pathogenicity Test

Seven month old sugarcane plants (Coc671, susceptible and Co86249, resistant) were inoculated with each isolate of C. falcatum by the standard plug method (Chona, 1954). Test pathogen C. falcatum was grown on PDA medium at room temperature (28±5°c) for fifteen days. Cultures were flooded with sterile distilled water and washes were combined to obtain a spore suspension of 1x10⁶ conidia/ml. A bore hole was made in the 3rd internode from the base of the standing cane using the red rot inoculators and one ml of the spore suspension $(1x10^{6} \text{ conidia/ml})$ was injected in to the bore hole of each cane using hypodermic syringe needle having 16G size. The bore hole was sealed with modeling clay to protect the canes from oxidation and contamination, the disease severity was recorded 60 days after inoculation. The canes were split open longitudinally 60 days after inoculation and the disease intensity was assessed on a 0-9 scale based on drying of cane tops, lesion width, lesion transgression across the nodes and presence of prominence of white spots in the stalks (Srinivasan and Bhat, 1961).

Extraction of toxin from *C. falcatum*

To characterize all the isolates based on the banding pattern of their secondary metabolites on silica gel plates, mycelial disc were inoculated into 250 ml conical flask containing 100 ml Czapek-Dox yeast (CDY) broth. The cultures were incubated by shaking for15 days. Uninoculated CDY served as the control. After incubation, 0.2 ml of 85 % phosphoric acid was added and the flasks were shaken vigorously. The contents were passed through two layers of cheesecloth to reduce fungal biomass. Ethyl acetate was used as solvent for extracting the phytotoxic fraction from the culture filtrates. The organic solvent was used at a ratio of 1:1 (v/v) (culture filtrate to organic solvent). The extraction process was repeated twice. Concentrated Na₂SO₄ was added to the combined extract from two extractions to remove water and incubated overnight, after which the solvent was evaporated in a rotary evaporator under reduced pressure then dissolved in 250 microlitre of ethyl acetate and stored at 20 °C (Abang et al., 2009).

High Performance Thin Layer Chromatography (Hptlc) Analysis

The ethyl acetate extracts of all isolates were separated by applying the extracts to a hptlc pre-coated silica gel glass

Isolates	Cultivar	Location	District/State
Cf1	Co86032	Armalkulam	Tirunelveli
Cf2	Co86032	Ambai	Tirunelveli
Cf3	Coc671	Devakottai	Sivagangai
Cf4	Co6304	Nellikuppam	Cuddalore
Cf5	Co6304	Pennadam	Cuddalore
Cf6	Co0323	Nellikuppam	Cuddalore
Cf7	Co94012	Nellikuppam	Cuddalore
Cf8	Co87012	Nellikuppam	Cuddalore
Cf9	Co86032	Kallakurchi	Villupuram
Cf10	Co6304	Thiyagavalli	Cuddalore
Cf11	Co87012	Pennadam	Cuddalore
Cf12	Coc671	Ariyakudi	Sivagangai
Cf13	Coc671	Kallakurchi	Villupuram
Cf14	Coc671	Padamathur	Sivagangai
Cf15	Si94045	Pahour	Pondicherry
Cf16	91V83	Annakapalli	Andrapradesh
Cf17	81V48	Annakapalli	Andrapradesh
Cf18	Co86032	Sethiathope	Cuddalore
Cf19	Co7219	Annakapalli	Andrapradesh
Cf20	Co 6304	Pennadam	Cuddalore
Cf21	Si94045	Naduveerapattu	Cuddalore
Cf22	Si94045	Madapattu	Villupuram
Cf23	Co87012	Arasur	Villupuram
Cf24	Co87012	Tittagudi	Cuddalore
Cf25	Si 94025	Kandarkottai	Cuddalore
Cf03(R)			
Cf04(R)			
Cf05(R)	Sugarcane Breed	ling Institute, Coimbatore	
Cf06(R)			
Cf08(R)			

Table 1. Isolates used in the study.

Cf- Colletotrichum falcatum Cf(R)-Colletotrichum falcatum Race

plate. A mixture of n-hexane and ethyl acetate at a ratio of 3:1 (v/v) was used as solvent after tests with different solvent combinations and ratios showed that this solvent gave the best results. Compounds were detected under light at 254 and 366 nm. Rf values for observed bands were calculated using the formula:

Rf= distance travelled by the spot/distance travelled by the solvent.

Identification of virulent isolates with crude toxins produced by *C. falcatum*

Two sugarcane varieties used for the bioassay throughout the study were: Coc671 (Susceptible variety) and (Co 86249) Resistance Variety. The crude extract were injecting at different volumes (50, 100 and 200 μ I) at the middle of 10cm long sugarcane stem of each variety. The stems were observed for emergence and degree of disease development. Un-inoculated liquid medium was used for the control.

Serial dilutions (10⁻¹ to 10⁻⁶) of the toxin were prepared with sterile distilled water. Distilled water was used for the control. Each toxin dilution was used to screen the two sugarcane varieties, to determine the degree of resistance/susceptibility of the varieties towards the red-rot disease. The treatment was carried out by aseptically injecting different dilutions of crude toxin solution into one cut end of 10 cm long sugarcane stem of each variety. The stems were wrapped with aluminum foil and incubated for 5 days before they were observed for disease development. To determine the effect

Isolates	Length (µm) *	Width	Color	Shape
		(µm) *		
Cf1	35.0 ^{abc}	11.0 ^{abc}	Hyaline	Falcate
Cf2	32.7 ^{b-e}	11.5 ^a	Hyaline	Falcate
Cf3	37.0 ^a	10.5 ^{bcd}	Hyaline	Falcate
Cf4	32.0 ^{cde}	10.0 ^d	Hyaline	Falcate
Cf5	33.7 ^{a-e}	10.5 ^{bcd}	Hyaline	Falcate
Cf6	33.0 ^{b-e}	10.0 ^d	Hyaline	Falcate
Cf7	34.0 ^{a-d}	10.5 ^{bcd}	Hyaline	Falcate
Cf8	32.7 ^{b-e}	10.2 ^{cd}	Hyaline	Falcate
Cf9	32.7 ^{b-e}	10.0 ^d	Hyaline	Falcate
Cf10	30.3 ^e	10.5 ^{bcd}	Hyaline	Falcate
Cf11	36.7 ^a	11.5 ^a	Hyaline	Falcate
Cf12	37.0 ^a	11.0 ^{abc}	Hyaline	Falcate
Cf13	33.0 ^{b-e}	11.4 ^{ab}	Hyaline	Falcate
Cf14	34.0 ^{a-d}	10.5 ^{bcd}	Hyaline	Falcate
Cf15	35.0 ^{abc}	10.0 ^d	Hyaline	Falcate
Cf16	35.7 ^{ab}	10.5 ^{bcd}	Hyaline	Falcate
Cf17	32.0 ^{cde}	10.8 ^{a-d}	Hyaline	Falcate
Cf18	32.7 ^{b-e}	10.5 ^{bcd}	Hyaline	Falcate
Cf19	30.7 ^{de}	10.4 ^{cd}	Hyaline	Falcate
Cf20	34.0 ^{a-d}	10.4 ^{cd}	Hyaline	Falcate
Cf21	32.7 ^{b-e}	11.0 ^{abc}	Hyaline	Falcate
Cf22	31.0 ^{de}	10.5 ^{bcd}	Hyaline	Falcate
Cf23	30.3 ^e	11.5 ^a	Hyaline	Falcate
Cf24	33.7 ^{a-e}	10.0 ^d	Hyaline	Falcate
Cf25	31.7 ^{cde}	10.5 ^{bcd}	Hyaline	Falcate
Cf03(R)	30.7 ^{de}	11.0 ^{abc}	Hyaline	Falcate
Cf04(R)	32.0 ^{cde}	10.5 ^{bcd}	Hyaline	Falcate
Cf05(R)	31.0 ^{de}	10.5 ^{bcd}	Hyaline	Falcate
Cf06(R)	30.7 ^{de}	11.5 ^ª	Hyaline	Falcate
Cf08(R)	33.0 ^{b-e}	11.0 ^{abc}	Hyaline	Falcate
*Mean of ten conidia				

Table 2. Conidial characteristics of different isolates of C. falcatum.

In a column, means followed by a common letters are not significantly different 5 % level by DMRT

Cf- Colletotrichum falcatum

Cf(R)-Colletotrichum falcatum Race

of the toxin on the leaves, matured leaves were detached and cut into pieces each into 10 cm long. The mid-veins were injected as described for the stem. The lesion size was measured in centimeter and then it is converted to percent infected area.

STATISTICAL ANALYSES

The data were statistically analyzed using the IRRISTAT version 92 developed by the International Rice Research Institute Biometrics unit, the Philippines (Gomez and Gomez, 1984). Prior to statistical analysis of variance (ANOVA) the percentage values of the disease index

were arcsine transformed. Data were subjected to analysis of variance (ANOVA) at two significant levels (P< 0.05 and P < 0.01) and means were compared by Duncan's Multiple Range Test (DMRT).

the

at

RESULTS

The morphological characteristics of different isolates of *C. falcatum* on PDA medium were studied, significant variations were observed with respect to conidial dimensions among the isolates. The isolates of *C. falcatum* produced hyaline falcate shaped conidia. The length of conidia ranged from $30.0-37.0\mu$ m. Highest length

Isolate	Colony color	Substrate color	Margin	Topography	*Colony diameter (mm)	Sporulation
Cf1	White	Black	Smooth	Mycelium flat growth	89.00 ^{ab}	++
Cf2	White	black	Smooth	Raised fluffy growth	89.61 ^{ab}	++
Cf3	Whitish orange	Black	Smooth	Mycelium flat growth	89.10 ^{ab}	+++
Cf4	Greyish White	Dark grey	Smooth	Raised fluffy growth	74.00 ^c	++
Cf5	White	black	Smooth	Raised fluffy growth	89.00 ^{ab}	+++
Cf6	Greyish White	black	Smooth	Raised fluffy growth	81.06 ^{bc}	++
Cf7	White	Dark grey	Smooth	Raised fluffy growth	86.03 ^{ab}	+++
Cf8	Light Grey	Black	Irregular	Mycelium flat growth	86.40 ^{ab}	+++
Cf9	Whitish orange	Pinkish black	Smooth	Raised fluffy growth	88.45 ^{ab}	++
Cf10	Whitish orange	Pinkish black	Smooth	Raised fluffy growth	87.25 ^{ab}	+++
Cf11	White	Pinkish black	Smooth	Raised fluffy growth	60.50 ^d	++
Cf12	White	Pinkish black	Smooth	Raised fluffy growth	85.50 ^{ab}	++
Cf13	White	Black	Smooth	Mycelium flat growth	88.75 ^{ab}	+
Cf14	Grey	black	Smooth	Raised fluffy growth	90.00 ^a	+++
Cf15	Whitish orange	Pinkish black	Smooth	Raised fluffy growth	90.00 ^a	+++
Cf16	Grey	black	Smooth	Raised fluffy growth	86.55 ^{ab}	+++
Cf17	Greyish white	Dark grey	Smooth	Raised fluffy growth	89.00 ^{ab}	+++
Cf18	White	Black	Smooth	Raised fluffy growth	89.50 ^{ab}	++
Cf19	Black	Black	Smooth	Raised fluffy growth	88.25 ^{ab}	+++
Cf20	Black	Black	Smooth	Raised fluffy growth	89.00 ^{ab}	+++
Cf21	Greyish white	Black	Smooth	Raised fluffy growth	90.00 ^a	+++
Cf22	Greyish white	Black	Irregular	Raised fluffy growth	90.00 ^a	+++
Cf23	Grey	Grey	Smooth	Raised fluffy growth	85.50 ^{ab}	++
Cf24	White	White	Smooth	Raised fluffy growth	90.00 ^a	+++
Cf25	Grey	Blackish grey	Smooth	Raised fluffy growth	90.00 ^a	+++
Cf03(R)	Grey	Blackish white	Smooth	Raised fluffy growth	90.00 ^a	++
Cf04(R)	Greyish white	Black	Smooth	Raised fluffy growth	90.00 ^a	+++
Cf05(R)	White	white	Irregular	Raised fluffy growth	90.00 ^a	++
Cf06(R)	Greyish white	Black	Smooth	Raised fluffy growth	87.50 ^{ab}	+++
Cf08(R)	Greyish White	Black	Irregular	Raised fluffy growth	90.00 ^a	+++

Table 3. Cultural characters of different isolates of C. falcatum.

+Poorsporulation : 1-10 spores / microscopic field (100X); ++ Medium sporulation : 11-50 spores/ microscopic field (100X), +++ Good sporulation : More than 100 spores/ microscopic field (100X)* Mean of three replications, In a column, means followed by a common letter is not significantly different at the 5 % level by DMRT.

Cf- Colletotrichum falcatum, Cf(R)- Colletotrichum falcatum Race.

Prema et al. 064

Isolates	CoC671	Co 86249
Cf1	S	R
Cf2	S	R
Cf3	S	I
Cf4	S	R
Cf5	S	R
Cf6	S	R
Cf7	S	R
Cf8	S	R
Cf9	S	R
Cf10	S	R
Cf11	S	R
Cf12	S	R
Cf13	S	R
Cf14	S	R
Cf15	S	R
Cf16	S	R
Cf17	S	R
Cf18	S	R
Cf19	S	R
Cf20	S	R
Cf21	S	R
Cf22	S	R
Cf23	S	R
Cf24	S	R
Cf25	S	R
Cf03(R)	S	R
Cf04(R)	S	R
Cf05(R)	S	R
Cf06(R)	S	R
Cf08(R)	S	R

Table 4. Pathogenicity of different isolates of C. falcatum.

R (Resistant) - Lesion width laterally restricted, nodal transgression up to two nodes, white spots, rind infection, sporulation over the rind and yellowing/drying of top absent.

S (Susceptible) - Lesion width laterally spreading, nodal transgression more than 2 nodes, white spots progressive or restricted. In case of progressive white spots rind infection, sporulation over the rind and yellowing/drying of top absent/present.

I(Intermediate) - Lesion width laterally restricted or spreading; nodal transgression more than 2 nodes; white spots absent or present (restricted type), rind, infection, sporulation over the rind and yellowing/drying of top absent.

Cf- Colletotrichum falcatum

Cf(R)-Colletotrichum falcatum Race

1. Cf1	7. Cf7	13.Cf13	19. Cf19	25.Cf25
2. Cf2	8. Cf8	14. Cf14	20. Cf20	26.Cf03(R)
3. Cf3	9. Cf9	15.Cf15	21. Cf21	27.Cf04(R)
4. Cf4	10.Cf10	16.Cf16	22. Cf22	28.Cf05(R)
5. Cf5	11. Cf11	17. Cf17	23. Cf23	29.Cf06(R)
6. Cf6	12. Cf12	18. Cf18	24.Cf24	30.Cf08(R)

Figure 1. Colony Characters of C. falcatum isolates.

Figure 2. Secondary metabolite profile of various isolates.

C- Ethyl acetate

of conidia was observed in Cf3 and Cf12 isolate (37 μ m) followed by Cf11 isolate (36.5 μ m) and shortest conidia was recorded in C10 and C23 isolates (30 μ m). Width of

the conidia ranged from 10 to 11.5 μ m. Conidia were falcate/sickle shaped with a round apical end tapering towards the base (Table 2).

Figure 3. Identificiton of virulent isolate with crude toxin

Reaction of Cf3 crude toxin in resistant variety Co 86249 showing redding symptoms on 6th day after inoculation in stem

c. Reaction of Cf3 crude toxin in susceptible variety Coc 671 showing redding symptoms on 6th day after inoculation in leaves

d. Reaction of Cf3 crude toxin in resistant variety Co 86249 showing redding symptoms on 6th day after inoculation in leaves

Different colony colors *viz.*, grey, light grey, Black, whitish orange and white were observed. Red rot isolates *viz.*,Cf1,Cf2, Cf5,Cf7, Cf11, Cf12, Cf13, Cf18, Cf24 and Cf05(R) isolates exhibited White, while other isolates *viz.*,Cf14, Cf16, Cf23,Cf25 and Cf03(R) were grey. The isolates Cf19 and Cf20 showed Black mycelia. Isolates of others grayish white and whitish orange. All the isolates showed variation regarding substrate color, margin, topography, colony diameter and sporulation (Figure 1; Table 3).

Pathogenicity

Among the 30 isolates tested against the two varieties, Coc671 showed highly susceptible to all the isolates and whereas Co 86249 showed resistant reaction against all the isolates of *C. falcutm* except Cf3, which showed intermediate reaction, isolate Cf3 was highly virulent which was later tested for the correlation of virulence and toxin produced (Table 4).

High Performance Thin Layer Chromatography (Hptlc) Analysis

Attempts were made to differentiate *C. falcatum* isolates based on their secondary metabolite profile. Ethyl acetate extracts prepared for each of 3 isolates with known morphological and virulence characteristics were chromatographed on hptlc plates. A single band (Rf = 0.36) was identified for Cf3, Cf6, Cf10, Cf18, Cf04(R) isolates when visualized under UV light at a wavelength of 366 nm. The band was conspicuously absent in control and also a more complex pattern of bands was observed with Rf = 0.08 in various isolates (Figure 2).

Identification of virulent Isolates with crude toxins produced by *C. falcatum*

In order to test the virulent nature of *C. falcatum* isolates, crude extract was subjected to two varieties in stems and

	Coc	; 671 ((% infe	ected area	on ca	ane ste	em)*						Co	8624	9(% in	fected	area	on ca	ane ste	em)*				
	2 [DAI			4 D	AI			6 E	DAI			2	DAI			4 C	DAI			6 E	DAI		
Isolates	С	50 µl	100 µl	200 μl	С	50 μΙ	100 µl	200 µl	С	50 µl	100 μΙ	200 µl	С	50 μΙ	100 µl	200 µl	С	50 µl	100 µl	200 µl	С	50 µl	10 0 µl	200 µl
Cf1	-	-	-	0.00 ^j (0.28)	-	-	0.00 ^h (0.28)	0.00 ^l (0.28)	-	-	31.5 ⁱ (34.1)	42.5 ^j (40.6)	-	-	-	-	-	-	-	-	-	-	-	0.00 ° (0.28)
Cf2	-	-	-	0.00 ¹ (0.28)	-	-	0.00 ^h (0.28)	0.00 ¹ (0.28)	-	-	30.5 ⁱ (33.5)	40.4 ^j (39.4)	-	-	-	-	-	-	-	-	-	-	-	0.00 [°] (0.28)
Cf3	-	-	-	17.2 ^a (24.4)	-	-	56.4 ^a (48.6)	71.8 ^a (57.9)	-	-	88.5 ^a (70.4)	92.3 ^a (74.4)	-	-	-	-	-	-	-	-	-	-	-	30.6 ^a (33.5)
Cf4	-	-	-	12.5 ^{ghi} (20.7)	-	-	32.5 ^{fg} (34.7)	52.5 ^{ijk} (46.4)	-	-	70.2 ^{c-g} (56.9)	73.3 ⁱ (58.9)	-	-	-	-	-	-	-	-	-	-	-	20.2 ^{mn} (26.7)
Cf5	-	-	-	12.2 ^{ghi} (20.4)	-	-	34.3 ^f (35.8)	54.4 ^{ijk} (47.5)	-	-	72.1 ^{b-g} (58.1)	80.5 ^{e-i} (63.8)	-	-	-	-	-	-	-	-	-	-	-	20.2 ^{mn} (26.7)
Cf6	-	-	-	11.4 ⁱ (19.7)	-	-	30.4 ^g (33.4)	48.3 ^k (44.0)	-	-	64.5 ^{gh} (53.4)	72.8 ⁱ (58.5)	-	-	-	-	-	-	-	-	-	-	-	23.6 ^{g-j} (29.0)
Cf7	-	-	-	12.1 ^{hi} (20.3)	-	-	32.7 ^{fg} (34.8)	50.1 ^{jk} (45.0)	-	-	66.7 ^{e-h} (54.7)	74.5 ^{hi} (59.7)	-	-	-	-	-	-	-	-	-	-	-	22.6 ^{ijk} (28.3)
Cf8	-	-	-	12.8 ^{fgh} (20.9)	-	-	38.5 ^{de} (38.3)	53.5 ^{g-j} (47.0)	-	-	68.9 ^{d-g} (56.1)	76.2 ^{ghi} (60.8)	-	-	-	-	-	-	-	-	-	-	-	21.7 ^{j-m} (27.7)
Cf9	-	-	-	12.6 ^{fgh} (20.7)	-	-	38.1 ^e (38.5)	54.9 ^{e-j} (47.8)	-	-	72.6 ^{b-g} (58.4)	78.4 ^{f-i} (62.3)	-	-	-	-	-	-	-	-	-	-	-	23.9 ^{ghi} (29.2)
Cf10	-	-	-	11.9 ^{hi} (20.1)	-	-	32.1 ^{fg} (34.5)	50.6 ^{jk} (45.3)	-	-	65.3 ^{fgh} (53.9)	74.5 ^{hi} (59.7)	-	-	-	-	-	-	-	-	-	-	-	24.0 ^{f-l} (29.3)
Cf11	-	-	-	12.8 ^{fgh} (20.9)	-	-	38.2 ^e (38.1)	54.1 ^{e-j} (47.3)	-	-	72.3 ^{b-g} (58.2)	81.5 ^{d-i} (64.6)	-	-	-	-	-	-	-	-	-	-	-	23.0 ^{hij} (28.6)
Cf12	-	-	-	16.7 ^{ab} (24.1)	-	-	41.5 ^{b-e} (40.1)	57.8 ^{b-h} (49.4)	-	-	77.3 ^{b-e} (61.6)	87.4 ^{a-e} (69.4)	-	-	-	-	-	-	-	-	-	-	-	27.4 ^{bc} (31.5)
Cf13	-	-	-	16.2 ^{ab} (23.7)	-	-	40.3 ^{b-e} (39.4)	56.4 ^{´b-i} 48.6)	-	-	74.2 ^{6-g} (59.5)	88.7 ^{á-d} (70.6)	-	-	-	-	-	-	-	-	-	-	-	28.3 ⁶ (32.1)
Cf14	-	-	-	16.5 ^{ab} (23.9)	-	-	42.5 ^{bc} (40.6)	58.1 ^{6-g} (49.6)	-	-	75.7 ^{b-f} (60.5)	89. ^{6abc} (71.4)	-	-	-	-	-	-	-	-	-	-	-	27.9 ⁶ (31.8)

Table 5. Screening of toxins produced different isolates of *C. falcatum* against Susceptible and Resistant varieties (Stem injection).

Table 5. Cont.

CHE				13.1 ^{fgh}	39.6 ^{b-e}	53.7 ^{f-j}		70.4 ^{b-g}	80.5 ^{e-i}											20.7 ^{k-n}
CITS	-	-	-	(21.2)	 (38.9)	(47.1)		(57.0)	(63.8)	-		-	-	-	-	-	-	-	-	(27.0)
040				13.4 ^{efg}	40.8 ^{b-e}	55.1 ^{d-j}		72.5 ^{b-g}	83.9 ^{bg}											20.6 ^{k-n}
CITE	-	-	-	(21.4)	 (39.6)	(47.9)		(58.4)	(66.4)	-		-	-	-	-	-	-	-	-	(26.9)
047				13.8 ^{ef}	40.9 ^{b-e}	55.3 ^{c-j}		72.9 ^{b-g}	84.0 ^{bg}											20.1 ^{mn}
CIT	-	-	-	(21.8)	 (39.7)	(48.0)		(58.6)	(66.5)	-		-	-	-	-	-	-	-	-	(26.6)
Cf1 9				0.00 ^j	0.00 ^h	0.00 ¹		30.3 i	40.2 ^j											19.1 ⁿ
CITO	-	-	-	(0.28)	 (0.28	(0.28)		(33.3)	(39.3)	-		-	-	-	-	-	-	-	-	(25.9)
Cf10				12.5 ^{ghi}	33.3 ^{fg}	52.5 ^{ijk}		73.5 ^{b-g}	82.3 ^{ch}											20.5 ^{Imn}
CIT9	-	-	-	(20.7)	 (35.2)	(46.4)		(59.0)	(65.2)	-		-	-	-	-	-	-	-	-	(26.9)
Cf20				12.8 ^{fgh}	33.9 ^f	53.4 ^{g-j}		71.4 ^{b-e}	80.8 ^{e-i}											19.6 ⁿ
0120	-	-	-	(20.9)	 (35.6)	(46.9)		(57.6)	(64.0)	-		-	-	-	-	-	-	-	-	(26.2)
Cf24				16.1 ^{ab}	40.1 ^{b-e}	58.5 ^{b-g}		76.7 ^{b-e}	85.4 ^{b-f}											25.3 ^{c-g}
CIZI	-	-	-	(23.6)	 (39.2)	(49.9)		(61.1)	(67.6)	-		-	-	-	-	-	-	-	-	(30.1)
Cfaa				16.2 ^{bc}	40.4 ^{b-e}	58.8 ^{b-f}		78.3 ^{bcd}	86.1 ^{a-f}											26.1 ^{b-f}
0122	-	-	-	(23.7)	 (39.4)	(50.0)		(62.2)	(68.2)	-		-	-	-	-	-	-	-	-	(30.7)
Cf22				16.6 ^{bc}	41.9 ^{bcd}	59.1 ^{b-e}		80.6 ^b	89.9 ^{ab}											24.3 ^{e-l}
0123	-	-	-	(24.0)	 (40.3)	(50.2)		(63.9)	(71.7)	-		-	-	-	-	-	-	-	-	(29.5)
Cf24				14.5 ^{de}	39.4 ^{cde}	52.8 ^{h-k}		70.5 ^{b-g}	80.4 ^{e-i}											22. ^{4 i-l}
0124	-	-	-	(22.3)	 (38.8)	(46.6)		(57.1)	(63.7)	-		-	-	-	-	-	-	-	-	(28.2)
Cf25				16.3 ^{ab}	42.6 ^{bc}	60.3 ^{bc}		78.1 ^{bcd}	84.8 ^{b-f}											22.9 ^{ij}
0125				(23.8)	(40.7)	(50.9)		(62.1)	(67.1)			-	-	-	-	-	-	-	-	(28.5)
				15.3 ^{cd}	42.1 ^{bcd}	60.1 ^{bcd}		78.2 bcd	85.4 ^{b-f}											25.1 ^{d-h}
C103(IX)	-	-	-	(23.0)	 (40.4)	(50.8)		(62.2)	(67.6)	-		-	-	-	-	-	-	-	-	(30.0)
	_	_	_	15.7 ^{bc}	 42.9 ^{bc}	60.7 ^b	_	79. ^{bcd)}	86.4 ^{a-f}	_		_	_	_	_	_	_	_	_	26.4 ^{b-e}
0104(10)	-	-	-	(23.3)	 (40.9)	(51.1)		(62.2)	(68.5)	-		-	-	-	-	-	-	-	-	(30.9)
	_	_	_	15.6 ^{cd}	 42.7 ^{bc}	60.4 ^{bc}	_	79.0 ^{bcd}	86.0 ^{a-f}	_		_	_	_	_	_	_	_	_	26.2 ^{b-e}
C105(R)	-	-	-	(23.2)	 (40.8)	(51.0)		(62.8)	(68.1)	-		-	-	-	-	-	-	-	-	(30.7)
	_	_	_	15.4 ^{cd}	 42.5 ^{bc}	60.3 ^{bc}	_	80.1 ^{bc}	87.0 ^{ae}	_		_	_	_	_	_	_	_	_	25.2 ^{c-g}
	-	-	-	(23.1)	 (40.6)	(50.9)		(62.7)	(69.0)	-		-	-	-	-	-	-	-	-	(30.1)
	_	_	_	15.8 ^{bc}	 43.2 ^b	61.3 ^b	_	81.8 ^{bc}	88.6 ^{a-d}	_	_	_	_	_	_	_	_	_	_	27.1 ^{bcd}
	-	-	-	(23.4)	 (41.0)	(51.5)		(63.5)	(70.5)	-	- •	-	-	-	-	-	-	-	-	(31.3)

*Mean of three replications In a column, means followed by a common letter is not significantly different at the 5 % level by DMRT Values in parentheses are arcsine transformed values DAI- Days After Inoculation Cf- *Colletotrichum falcatum* Cf(R)- *Colletotrichum falcatum* Race

	Сс	oc 671	(% in	ected area	a on c	ane s	tem)*						Co	o 862	49(% i	nfected	d are	a on (cane st	:em)*				
Isolate	2 [DAI			4 D	AI			6 [DAI			2	DAI			4 C	DAI			6 E	DAI		
S	с	50 µl	100 µl	200 μl	с	50 μΙ	100 μl	200 μl	С	50 μl	100 µl	200 µl	С	50 µl	100 µl	200 µl	С	50 µl	100 µl	200 µl	С	50 μl	10 0 µl	200 µl
Cf1	_	-	-	0.00 ^k	-	-	0.00 ¹ (0.28)	0.00^{m}	-	-	21.2 ^m (27.4)	32.4 ⁿ (34.6)	-	-	-	-	-	-	-	-	-	-	-	0.00 °
Cf2	-	-	-	0.00 ^k	-	-	0.00 ¹	0.00 ^m	-	-	24.7 ¹	34.7 ^m	-	-	-	-	-	-	-	-	-	-	-	0.00°
040				(0.28) 12.2 ^a			(0.28) 54.3 ^a	(0.28) 61.9 ^a			(29.7) 65.1 ^a	(39.4) 70.2 ^a												(0.28) 28.5 ^a
013	-	-	-	(20.4) 7 5 ^{gh}	-	-	(47.4) 28.4 ^{jk}	(51.8) 32 5 ^{ki}	-	-	(53.8) 33 6 ^{jk}	(56.9) 37.3 ^m	-	-	-	-	-	-	-	-	-	-	-	(32.2) 14 1 ^k
Cf4	-	-	-	(15.8)	-	-	(32.1)	(34.7)	-	-	(35.4)	(37.6)	-	-	-	-	-	-	-	-	-	-	-	(22.0)
Cf5	-	-	-	7.2 ^{9"} (15.5)	-	-	29.4" (32.8)	34.4 [^] (35.9)	-	-	60.5 [°] (51.0)	66.2 ^{abi} (54.4)	-	-	-	-	-	-	-	-	-	-	-	14.2 (22.1)
Cf6	-	-	-	6.2 ⁱ (14 4)	-	-	25.7 ^k (30.4)	38.6 ^j (38.4)	-	-	35.5 ^{jk} (36.5)	42.6 ^l (40.7)	-	-	-	-	-	-	-	-	-	-	-	15.7 ^{hij} (23.3)
Cf7	-	-	-	(11.1) 7.1 ^{gh} (15.4)	-	-	(33.0)	(30.6 ¹) (33.5)	-	-	32.5 ^k (34.7)	(10.7) 44.5 ^{kl} (41.8)	-	-	-	-	-	-	-	-	-	-	-	14.4 ^{jk} (22.2)
Cf8	-	-	-	7.8 ^g (16.2)	-	-	33.7 ^{gh} (35.4)	43.7 ^{gh} (41.3)	-	-	37.3 ^{ij} (37.6)	46.6 ^{jkl} (43.0)	-	-	-	-	-	-	-	-	-	-	-	13.5 ^{kl} (21.5)
Cf9	-	-	-	0.0 ^k (0.28)	-	-	33.9 ^{fgh} (35.6)	44.8 ^{fgh} (42.0)	-	-	39.3 ^{hi} (38.8)	48.5 ^{ijk} (44.1)	-	-	-	-	-	-	-	-	-	-	-	14.9 ^{ijk} (22.7)
Cf10	-	-	-	5.5 ^j (13.5)	-	-	28.3 ^{jk} (32.5)	38.6 ^j (38.4)	-	-	35.2 ^{jk} (36.3)	48.5 ^{ijk} (44.1)	-	-	-	-	-	-	-	-	-	-	-	16.0 ^{ĥi} (23.5)
Cf11	-	-	-	(10.0) 5.8 ^{ij} (12.0)	-	-	(33.4 ^{gh}	44.5 ^{fgh}	-	-	40.2 ^{hi}	51.8 ^{ghi}	-	-	-	-	-	-	-	-	-	-	-	$(24.2)^{gh}$
Cf12	-	-	-	(10.5) 11.1 ^{bcd}	-	-	(33.3) 41.4 ^c	(41.0) 52.5 ^{cd}	-	-	(33.3) [°]	(40.0) 64.5 ^b		-	-	-	-	-	-	-	-	-	-	(24.3) 19.4 ^f
Cf13	_	_	-	(19.4) 11.3 ^{bcd}	_	-	(40.0) 30.3 ^{ij}	(46.4) 46.4 ^{e-h}	_	-	(46.8) 43.4 ^{fgh}	(53.4) 55.7 ^{d-g}	_	_	-	-	_	-	-	-	_	-	-	(26.2) 17.7 ^g
Cf14	_	_	-	(19.6) 11.7 ^{ab}	_	_	(33.3) 31.4 ^{hij}	(42.9) 42.5 ^{hi}	_	_	(41.2) 41.8 ^{gh}	(48.2) 52.7 ^{f-i}	_	_	_	_	_	_	_	_	_	_	_	(24.8) 22.4 ^{cd}
0114				(20.0) 9.2 ^f			(34.0) 31.8 ^{hi}	(40.6) 42.6 ^{hi}			(40.2) 41.5 ^{gh}	(46.5) 52.9 ^{f-ii}												(28.2) 16.7 ^{gh}
0110	-	-	-	(17.6) 7.4 ^{gh}	-	-	(34.3) 36 9 ^{def}	(40.7) 47.8 ^{efg}	-	-	(40.1) 46.5 ^{def}	(46.6) 57.7 ^{def}	-	-	-	-	-	-	-	-	-	-	-	(24.1) 16.9 ^{gh}
Cf16	-	-	-	(15.7)	-	-	(37.4)	(43.7)	-	-	(42.9)	(49.4)	-	-	-	-	-	-	-	-	-	-	-	(24.2)

Table 6. Screening of toxins produced different isolates of *C. falcatum* against Susceptible and Resistant varieties (Leaf injection).

Table 6. Cont.

				7 8 a			38 4 ^{cde}	47 8 ^{efg}	48.8 d	57 0 ^{def}												16.3 ^{ghi}
Cf17	-	-	-	(16.2)	-	-	(38.2)	(43.7)	 (44.3)	(49.0)	-	-	-	-	-	-	-	-	-	-	-	(23.8)
				(-)				0.00 ^m														12.3 ¹
Cf18	-	-	-	0.00 ^k	-	-	0.00	0.00	 22.3	34.2	-	-	-	-	-	-	-	-	-	-	-	(20.5)
				(0.28)			(0.28	(0.28)	(28.1)	(35.7)												
Cf10	_	_	_	5.5 ^j	_	_	28.8 ^{ij}	38.9 ^{ij}	 39.8 ^{hi}	50.2 ^{hij}	_	_	_	_	_	_	_	_	_	_	_	15.7 ^{hij}
0119	-	-	-	(13.5)	-	-	(32.4)	(38.5)	 (39.1)	(45.1)	-	-	-	-	-	-	-	-	-	-	-	(23.3)
Cf20	-	-	_	5.8 ^{ij}	-	-	29.9 ^{ij}	38.4 ^j	 40.4 ^{hi}	48.8 ^{ijk}	-					-	_		-	-	-	16.3 ^{ghi}
0120				(13.9)			(33.1)	(38.2)	(39.4)	(44.3)												(23.8)
0/0/				a a bcd			36.2 ^{efg}	48.2 ^{ef}	46.8 ^{def}	58.6 ^{cde}												21.7 ^{cde}
Cf21	-	-	-	(10.4)	-	-	(36.9)	(43.9)	 (43.1)	(49.9)	-	-	-	-	-	-	-	-	-	-	-	(27.7)
				(19.4) 11 3 ^{bcd}			34 2 ^{fgh}	45 5 ^{e-f}	11 5 ^{efg}	55 1 ^{d-h}												20 8 ^{def}
Cf22	-	-	-	(19.6)	-	-	(35.7)	(42.4)	 (41.8)	(47.9)	-	-	-	-	-	-	-	-	-	-	-	(27.1)
				(10.0) 11 7 ^{ab}			(00.7) 37 6 ^{de}	(42.4) 49.2 ^{de}	47 6 ^{de}	59 8 ^{cd}												20.3 ^{ef}
Cf23	-	-	-	(20.0)	-	-	(37.8)	(44.5)	 (43.6)	(50.6)	-	-	-	-	-	-	-	-	-	-	-	(26.7)
				9.2 ^f			31.7 ^{hi}	42.6 ^{hi}	41.8 ^{gh}	53.5 ^{e-i}												21.5 ^{cde}
Cf24	-	-	-	(17.6)	-	-	(34.2)	(40.7)	 (40.2)	(47.0)	-	-	-	-	-	-	-	-	-	-	-	(27.6)
CHOF				11.4 ^{abc}			38.5 ^{cde}	48.0 ^{ef}	48.1 ^{de}	58.9 ^{cd}												22.9 ^{bc}
0125				(19.7)			(38.3)	(44.1)	(43.9)	(50.1)		-	-	-	-	-	-	-	-	-	-	(28.5)
	_	_	_	9.7 ^f	_	_	37.4 ^{de}	52.5 ^{cd}	 47.7 ^{de}	62.8 ^{bc}	_	_	_	_	_	_	_	_	_	_	_	22.1 ^{e-l}
0103(11)	-	-	-	(18.1)	-	-	(37.6)	(46.4)	 (43.6)	(52.4)	-	-	-	-	-	-	-	-	-	-	-	(28.0)
Cf04(R)	-	-	-	9.9 ^{et}	-	-	39.9 ^{cd}	54.3 ^{bc}	 49.5 ^d	64.9 [°]	-	-	-	-	-	-	-	-	-	-	-	22.4 ^{ca}
				(18.3)			(39.1)	(47.4)	(44.7)	(53.6)												(28.2)
Cf05(R)	-	-	-	10.6 ^{cue}	-	-	45.7°	56.6°	 55.8	66.3ª ^b	-	-	-	-	-	-	-	-	-	-	-	22.2 ^{cu}
()				(18.9)			(42.5)	(48.7)	(48.3)	(54.5)												(28.1)
Cf06(R)	-	-	-	10.5	-	-	45.5°	56.9°	 55.1°	66.7 ^{cl}	-	-	-	-	-	-	-	-	-	-	-	22.1°°
. ,				(18.9)			(42.4)	(48.9)	(47.9) 55 5 ⁰	(54.7)												(28.0) 24.5 ^b
Cf08(R)	-	-	-	(10.2)	-	-	45.2 (42.2)	50.3 (49.6)		00.4 (54.5)	-	-	-	-	-	-	-	-	-	-	-	24.5 (20.6)
				(19.2)			(42.2)	(40.0)	(40.1)	(34.5)												(29.0)

*Mean of three replications In a column, means followed by a common letter is not significantly different at the 5 % level by DMRT

Values in parentheses are arcsine transformed values DAI- Days After Inoculation Cf- Colletotrichum falcatum

Cf(R)- Colletotrichum falcatum Race

	Coc 67	1 (% infected	area on ste	m)				Co 86	249 (% infe	cted are	ea on ste	m)		
Isolates	Serial	dilution of the	toxin					Serial	dilution of t	he toxi	n			
	С	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	С	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶
Cf1		44.5 ^h	38.7 ^j	30.4 ^l	22.5 ^m	5.6 ^{rs}			0.00 ^m					
	-	(41.8)	(38.4)	(33.4)	(28.3)	(13.6)	-	-	(0.28)	-	-	-	-	-
Cf2		42.1 ^h	36.4 ^j	29.5 ¹	19.9 ^m	4.3 ^s			0.00 ^m					
	-	(40.4)	(37.1)	(32.8)	(26.4)	(11.9)	-	-	(0.28)	-	-	-	-	-
Cf3		93.1 ^a	86.3 ^a	80.4 ^a	71.2 ^a	50.5 ^{ab}			32.1 ^ª					
	-	(75.4)	(68.4)	(63.7)	(57.5)	(45.2)	-	-	(34.5)	-	-	-	-	-
Cf4		74.9 ^{fg}	68.2 ^{hi}	60.3 ^{jk}	51.5 ^{jkl}	20.5 ^q			21.2 ^{jkl}					
	-	(59.9)	(55.6)	(50.9)	(45.8)	(26.9)	-	-	(27.4)	-	-	-	-	-
Cf5		81.4 ^{c-f}	76.4 ^{b-g}	68.4 ^{f-i}	59.1 ^{d-h}	28.4 ^{op}			22.5 ^{g-k}					
	-	(64.5)	(60.9)	(55.8)	(50.2)	(32.1)	-	-	(28.3)	-	-	-	-	-
Cf6		71.4 ^g	66.9 ⁱ	58.3 ^k	47.9 ¹	27.3 ^p			24.5 ^{d-g}					
	-	(57.6)	(54.8)	(49.7)	(43.7)	(31.4)	-	-	(29.6)	-	-	-	-	-
Cf7		76.4 ^{fg}	70.2 ^{f-i}	63.5 ^{h-k}	54.7 ^{g-k}	34.1 ^{k-n}			22.7 ^{g-j}					
	-	(60.9)	(56.9)	(52.8)	(47.7)	(35.7)	-	-	(28.4)	-	-	-	-	-
Cf8		76.4 ^{fg}	70.5 ^{f-i}	62.8 ^{ijk}	53.0 ^{i-l}	32.3 ^{mn}			22.0 ^{h-l}					
	-	(60.9)	(57.1)	(52.4)	(46.7)	(34.6)	-	-	(27.9)	-	-	-	-	-
Cf9		79.4 ^{efg}	72.6 ^{e-i}	64.3 ^{h-k}	55.5 ^{f-k}	36.2 ^{i-l}			24.0 ^{e-h}					
	-	(63.0)	(58.4)	(53.3)	(48.1)	(36.9)	-	-	(29.3)	-	-	-	-	-
Cf10		75.5 ^{fg}	69.2 ^{ghi}	60.2 ^{jk}	50.1 ^{ki}	31.1 ^{no}			23.6 ^{f-l}					
	-	(60.3)	(56.3)	(50.8)	(45.0)	(33.8)	-	-	(29.0)	-	-	-	-	-
Cf11		82.0 ^{c-f}	76.4 ^{b-g}	67.5 ^{f-i}	56.4 ^{e-j}	35.3 ^{j-m}			28.0 ^{bc}					
	-	(64.9)	(60.9)	(55.2)	(48.6)	(36.4)	-	-	(31.9)	-	-	-	-	-
Cf12	_	88.5 ^{a-d}	82.4 ^{abc}	75.3 ^{a-e}	66.3 ^{abc}	45.2 ^{cd}	_	_	29.1 ^b	_	_	_	_	_
	-	(70.4)	(65.2)	(60.2)	(54.5)	(42.2)	-	-	(32.6)	-	-	-	-	-
Cf13	_	88.9 ^{abc}	83.1 ^{ab}	77.4 ^{a-d}	67.8 ^{ab}	46.3 ^c	_	_	28.8 ^b	_	_	_	_	_
	-	(70.7)	(65.8)	(61.6)	(55.4)	(42.8)	-	-	(32.4)	-	-	-	-	-
Cf14	_	89.8 ^{ab}	83.6 ^{ab}	77.7 ^{abc}	70.0 ^a	51.4 ^a	_	_	21.2 ^{jkl}	_	_	_	_	_
	-	(71.6)	(66.2)	(61.8)	(56.8)	(45.8)	-	-	(27.4)	-	-	-	-	-
Cf15	_	82.5 ^{b-f}	76.8 ^{b-g}	69.2 ^{e-i}	58.4 ^{d-i}	37.2 ^{h-k}	_	_	21.4 ^{jkl}	_	_	_	_	_
	-	(65.3)	(61.2)	(56.3)	(49.8)	(37.5)	-	-	(27.5)	-	-	-	-	-
Cf16	_	83.5 ^{b-f}	77.3 ^{b-f}	70.1 ^{e-h}	60.3 ^{def}	39.9 ^{fgh}	_	_	21.0 ^{jkl}	_	_	_	_	_
	-	(66.1)	(61.6)	(56.8)	(50.9)	(39.1)	-	-	(27.2)	-	-	-	-	

Table 7. Screening of different toxins dilution of *C. falcatum* against Susceptible and Resistant varieties (Stem injection).

Table 7. Cont.

Cf17		85.5 ^{b-e}	79.3 ^{b-e}	71.3 ^{d-g}	61.6 ^{cde}	40.1 ^{fgh}	21.5 ⁱ⁻ⁱ	
	-	(67.7)	(63.0)	(57.6)	(51.7)	(39.2)	(27.6)	-
Cf18		41.7 ^h	37.1 ^j	32.5 ¹	23.5 ^m	5.9 ^r	22.1 ^{h-l}	
	-	(40.2)	(37.5)	(34.7)	(28.9)	(14.0)	(28.0)	-
Cf19		83.6 ^{b-f}	77.3 ^{b-f}	70.1 ^{e-h}	60.4 ^{def}	38.5 ^{g-j}	20.1 ¹	
	-	(66.2)	(61.6)	(56.8)	(51.0)	(38.3)	(26.6)	-
Cf20		80.5 ^{d-g}	74.1 ^{d-i}	66.5 ^{g-j}	55.3 ^{f-k}	33.5 ^{lmn}	20.5 ^{kl}	
	-	(63.8)	(59.4)	(54.6)	(48.0)	(35.3)	(26.9)	-
Cf21		86.1 ^{b-e}	80.2 ^{a-d}	73.1 ^{c-g}	62.4 ^{cd}	40.3 ^{fgh}	25.0 ^{def}	
	-	(68.2)	(63.6)	(58.7)	(52.1)	(39.4)	(29.9)	-
Cf22		90.1 ^{ab}	86.4 ^a	79.1 ^{ab}	69.3 ^a	47.4 ^{bc}	26.5 ^{cd}	
	-	(71.9)	(68.5)	(62.8)	(56.3)	(43.5)	(30.9)	-
Cf23			75.5 ^{c-h}	67.2 ^{f-i}	54.3 ^{h-k}	32.5 ^{mn}	24.0 ^{e-h}	
	-	(64.8)	(60.3)	(55.0)	(47.4)	(34.7)	(29.3)	-
Cf24		85.2 ^{b-e}	79.9 ^{a-e}	, 70.2 ^{e-h}	60.5 ^{def}	39.8 ^{fgh}	23.0 ^{f-j}	
	-	(67.5)	(63.4)	(56.9)	(51.0)	(39.1)	(28.6)	-
Cf25			80.3 ^{a-d}	72.1 ^{c-g}	60.4 ^{def}	39.0 ^{ghi}	24.4 ^{d-g}	
		(68.4)	(63.7)	(58.1)	(51.0)	(38.6)	(29.5)	
Cf03(R)		85.6 ^{b-e}	79.2 ^{b-e}	71.2 ^{d-g}	59.9 ^{d-g}	38.3 ^{g-j}	24.7 ^{d-g}	
()	-	(67.8)	(62.9)	(57.5)	(50.7)	(38.2)	(29.7)	-
Cf04(R)			81.2 ^{a-d}	73.4 ^{b-f}	63.3 ^{bcd}	41.4 ^{efg}	26.0 ^{cde}	
()	-	(69.0)	(64.3)	(58.9)	(52.7)	(40.0)	(30.6)	-
Cf05(R)		87.5 ^{a-e}	80.1 ^{a-e}	72.9 ^{c-g}	62.4 ^{cd}	42.6 ^{def}	26.6 ^{cd}	
	-	(69.4)	(63.5)	(58.6)	(52.1)	(40.7)	(31.0)	-
Cf06(R)		88.0 ^{a-d}	81.3 ^{a-d}	73.0 ^{c-g}	63.0 ^{bcd}	44.2 ^{cde}	26.0 ^{cde}	
	-	(69.9)	(64.4)	(58.7)	(52.5)	(41.6)	(30.6)	-
Cf08(R)		89.0 ^{abc}	81.9 ^{abc}	73.5 ^{b-f}	63.5 ^{bcd}	44.7 ^{cde}	28.9 ^b	
	-	(70.8)	(64.9)	(59.0)	(52.8)	(41.9)	(32.5)	-
		1 /	1 /	1/	1 /	/		

*Mean of three replications In a column, means followed by a common letter is not significantly different at the 5 % level by DMRT Values in parentheses are arcsine transformed values Cf- *Colletotrichum falcatum* Cf(R)- *Colletotrichum falcatum* Race

	Coc 67	1 (% infected	area on leaf))				Co 86	249 (% infe	cted are	ea on lea	f)		
	Serial	dilution of the	toxin					Serial	dilution of t	he toxi	n			
	С	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	С	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶
Cf1	-	30.5 ^k (33.5)	21.6 ^k (27.7)	10.2 ⁿ (18.6)	5.9 ⁿ (14.0)	-	-	-	0.00 ⁰ (0.28)	-	-	-	-	-
Cf2	-	32.0 ^{jk} (34.4)	22.9 ^{jk} (28.6)	10.9 ⁿ (19.2)	6.2 ⁿ (14.4)	-	-	-	0.00 [°] (0.28)	-	-	-	-	-
Cf3	-	68.3 ^a (55.7)	57.8 ^a (49.5)	35.3 ^a (36.4)	25.7 ^a (30.4)	-	-	-	26.8 ^a (31.1)	-	-	-	-	-
Cf4	-	35.2 ^j (36.3)	25.7 ^j (30.5)	14.3 ^m (22.2)	8.6 ^m (17.0)	-	-	-	11.4 ⁿ (19.7)	-	-	-	-	-
Cf5	-	63.3 ^b (52.7)	54.9 ^{ab} (47.8)	32.5 ^b (34.7)	21.4 ^{cde} (27.5)	-	-	-	12.1 ^{mn} (20.3)	-	-	-	-	-
Cf6	-	39.7 ¹ (39.0)	29.1 i (32.6)	17.2 ^l (24.4)	10.2 ^l (18.6)	-	-	-	13.5 ^{ki} (21.5)	-	-	-	-	-
Cf7	-	40.5 (39.5)	31.4i (34.1)	19.5 ^k (26.2)	12.3 ^k (20.5)	-	-	-	12.5 ^{lmn} (20.7)	-	-	-	-	-
Cf8	-	41.4 ¹ (40.0)	32.2 i (34.6)	18.9 ^{kl} (25.7)	12.0 ^k (20.2)	-	-	-	11.7 ^{mn} (20.0)	-	-	-	-	-
Cf9	-	46.8 ^h (43.1)	37.3 ^{gh} (37.6)	23.6 ^{hij} (29.0)	16.6 ^{ij} (24.0)	-	-	-	11.8 ^{mn} (20.3)	-	-	-	-	-
Cf10	-	45.9 ^h (42.6)	36.4 ^{gh} (37.1)	22.4 ^j (28.2)	16.0 ^j (23.5)	-	-	-	14.5 ^{ijk} (22.3)	-	-	-	-	-
Cf11	-	49.9 ^{fgh} (44.9)	38.2 ^{gh} (38.2)	24.5 ^{°f-j} (29.6)	18.6 ^{gh} (25.5)	-	-	-	15.4 ^{ij} (23.1)	-	-	-	-	-
Cf12	-	61.5 ^{bc} (51.6)	50.2 ^{cd} (45.1)	29.8 ^{cd} (33.0)	20.4 ^{def} (26.8)	-	-	-	17.3 ^h (24.5)	-	-	-	-	-
Cf13	-	50.6 ^{fgh} (45.3)	40.1 ^{ŕg} (39.3)	25.9 ^{fgh} (30.5)	19.0 ^{fgh} (25.8)	-	-	-	15.8 ⁱ (23.4)	-	-	-	-	-
Cf14	-	48.9 ^{fgh} (44.3)	37.2 ^{gh} (37.6)	23.2 ^{ij} (28.7)	17.0 ^{ij} (24.3)	-	-	-	20.7 ^{cd} (27.0)	-	-	-	-	-
Cf15	-	48.7 ^{fgh} (44.2)	38.1 ^{gh} (38.1)	23.9 ^{g-j} (29.2)	18.0 ^{hi} (25.0)	-	-	-	14.8 ^{-ijk} (22.6)	-	-	-	-	-

Table 8. Screening of different toxins dilution of *C. falcatum* against Susceptible and Resistant varieties (Leaf injection).

Prema et al. 074

Table 8. Cont.

		ro z def	10 of	oc r ^{ef}	10 oefg		111				
Cf16	-	53.7	42.6	26.5	19.9-3		_ 15.0"	-	-	-	-
		(47.1)	(40.7)	(30.9)	(26.4)		(22.7)				
Cf17	-	53.0 ^{erg}	42.0 ^r	26.0 ^{fg}	20.1 ^{erg}		14.9 ["]	_	_	_	-
		(46.7)	(40.4)	(30.6)	(26.6)		(22.7)				
Cf18	-	31.6 ^{jk}	20.1 ^k	10.0 ⁿ	5.4 ⁿ		14.3 ^{jk}				
		(34.1)	(26.6)	(18.4)	(13.4)		- (22.2)	-	-	-	-
Cf19	-	48.5 ^{gh}	37.2 ^{gh}	24.3 ^{f-j}	18.0 ^{hi}		15.7 ^{ij}				
		(44.1)	(37.6)	(29.5)	(25.0)		(23.3)	-	-	-	-
Cf20	-	46.1 ^h	35.8 ^h	22.4	16.6 ^{ij}		13.0 ^{lm}				
		(42.7)	(36.7)	(28.2)	(24.0)		· (21.1)	-	-	-	-
Cf21	-	56.7 ^{de}	46.2 ^e	28.5 ^{de}	20.0 ^{efg}		14.5 ^{ijk}				
		(48.8)	(42.8)	(32.2)	(26.5)		- (22.3) -	-	-	-	-
Cf22	-	57.8 ^{cd}	46.4 ^e	28.9 ^d	20.6 ^{def}		18.9 ^{fg}				
		(49.4)	(42.9)	(32.5)	(26.9)		- (25.7) -	-	-	-	-
Cf23	-	50.1 ^{fgh}	40.0 ^{fg}	25.0 ^{f-i}	19.0 ^{fgh}		18.4 ^{gh}				
		(45.0)	(39.2)	(30.0)	(25.8)		- (25.3) -	-	-	-	-
Cf24	-	58.1 ^{cd}	47.3 ^{de}	30.0 ^{cd}	21.5 ^{cde}		20.5 ^{cde}				
		(49.6)	(43.5)	(33.2)	(27.6)		(26.9)	-	-	-	-
Cf25		62.0 ^{bc}	51.9 ^{bc}	32.5 ^b	22.6 ^{bc}		19.1 ^{efg}				
		(51.9)	(46.1)	(34.7)	(28.3)		(25.9)				
Cf03(R)	-	64.1 ^{ab}	54.2 ^{ab}	33.5 ^{ab}	23.0 ^{bc}		22.0 ^{bc}				
		(53.2)	(47.4)	(35.3)	(28.6)		- (27.9) -	-	-	-	-
Cf04(R)	-	65.4 ^{ab}	54.8 ^{ab}	33.8 ^{ab}	23.8 ^b		20.3 ^{def}				
		(53.9)	(47.8)	(35.5)	(29.1)		- (27.0) -	-	-	-	-
Cf05(R)	-	65.7 ^{ab}	54 9 ^{ab}	34.1 ^{ab}	24.0 ^b		20 7 ^{cd}				
		(54.1)	(47.8)	(35.7)	(29.3)		(28.3)	-	-	-	-
Cf06(R)	-	64.8 ^{ab}	52.2 ^{′bc}	31.9 ^{bc}	22.0 ^{cd}		20 6 ^{cde}				
		(53.9)	(46.3)	(34.3)	(27.9)	-	(26.9)	-	-	-	-
Cf08(R)	-	64.9 ^{áb}	52.4 ^{6c}	32.0 ^{bc}	21.9 ^{cd}		22.5 ⁶				
		(53.6)	(46.4)	(34.4)	(27.9)		- (28.3)	-	-	-	-

*Mean of three replications In a column, means followed by a common letter is not significantly different at the 5 % level by DMRT Values in parentheses are arcsine transformed values Cf- *Colletotrichum falcatum* Cf(R)- *Colletotrichum falcatum* Race

leaves (Figure 3). In Coc671, there was no reddening symptom induced by up to 100 μ l in crude extract after 2 days of inoculation, but there were noticeable reaction with 200 μ l reaction, expect Cf1 and Cf2. Six days after inoculation, all isolates showed reddening reaction with 100 μ l of crude extract. Maximum reddening symptoms were observed on the 6th day with 92.3 (% infected area on cane stem) in 200 μ l. In resistant variety Co 86249, there were no symptoms till 4th day. On sixth day reddening symptom was noticed in 200 μ l crude extract. Similar results were noticed in leaves with maximum reddening area of (70.20 and 14.1, % infected area on leaf) in Coc671 and Co 86249 respectively (Table 5 and 6; Figure 3).

The results of screening of the sugarcane with serially diluted toxin are presented in Table 7 and 8. In the stem treatment with Coc671, toxin dilution of 10⁻¹ to 10⁻⁵ showed reddening symptom. In 10⁻⁵ dilutions maximum % infected area was noticed in Cf3 (50.5%) and least was noticed in Cf18 (5.9%). In Co 86249, only 10⁻¹ diluted toxin showed reddening symptom. Among isolates tested toxins from Cf3 showed maximum per cent infected area (32.1 %) and the isolates Cf1 and Cf2 did not show any reaction. Similarly, leaf treatment with Coc671, the various diluted toxin of Cf3 at 10⁻⁵ showed maximum percent infected area on leaves (17.3 %). Among the diluted toxins of thirty isolates tested against Co86249 leaves, only 10 ⁻¹ diluted toxin showed reddening symptom. Toxin from the isolates Cf3 showed maximum per cent infected area (26.8 %) whereas toxins from Cf1 and Cf2 did not show any symptom.

DISCUSSION

Red rot caused by the fungus C. falcatum is dreadful and seed transmissible stalk disease which spreads from place to place through the infected sugarcanes (Ramesh Sundar et al., 2009; Malathi et al., 2010). Various measures have been developed to effectively control the disease but it being unsuccessful, since the pathogen adopts to improved fungicide and develops new races which break the resistant. In the present study, to understand the genetic population structure of C. falcatum isolates and their relation with the races prevalent in Tamil Nadu. Twenty five isolates were collected from various districts of Tamil Nadu and five races were obtained from Sugarcane Breeding Institute, Coimbatore. Morphological variation revealed that there exists a wide variation among the isolates which is the basic method for characterization of different isolates. Similar results have been obtained by Malathi et al. (2011), in a study with large number of isolates the growth of isolates has direct correlation with pathogencity and it revealed that the tropical isolates were light colored, fast growing and highly sporulating types. Prema et al. (2011), observed wide variation in C. musae isolates with respect to cultural and morphological characters, the isolates produced blackish white, light pink and dark orange colored colonies.

Studies on pathogenic variability during 1993-2000 revealed the existence of four new pathotypes *viz.*, Cf 07, Cf 08, Cf 09, and Cf 10. But all the pathotypes except Cf 09 were avirulent on CoS 767 (Sathyavir et al., 2001). In the current study the isolate Cf3 showed highly virulent, since it produced symptom in resistant variety Co 86249. The pathotype reaction of Cf 997 in Andhra Pradesh was studied by Nageswararao and Patro (2005) and concluded that there exist four pathotypes when they screened 12 host differentials.

Several evidence now a day are emerging suggesting that the genomes of plant pathogenic fungi are rich in genes that are likely to be involved in the synthesis of secondary metabolites, such as nonribosomal peptide synthases and polyketide syntheses, whereas saprophytes appear to be deficient in such genes (Yoder & Turgeon, 2001). This secondary metabolite production by the pathogenic strains boost and aid in the pathogenesis process for successful establishment of disease in susceptible host.

In the present study of stem and leaf bioassay, toxin from Cf3 which is isolated from the susceptible Coc671 showed maximum percent infection of 92.3 % on 6th day, the same isolate shows some kind of disease reaction in the reported resistant variety Co 86249. Similar results were observed in leaves treated with the crude toxin. A successful pathogen requires potential warfare tools in the form of toxin and hydrolytic enzymes for penetration and infection in the host. Correlation between disease expression and production of secondary metabolites viz., toxin, enzymes and melanin by the pathogen has been established. This was confirmed by inoculating partially purified toxin from isolated from susceptible sugarcane cv. Coc671 have been compared for this purpose (Mohanraj et al., 2003). In the present study, the serially diluted toxin tested showed positively up to 10⁻⁵ with maximum 50.5 % infected area on stem treated with the crude dilution of Cf3. Similarly Olufolaji (2000), conducted bioassay with crude and partially purified toxins in stem and leaf and reported that CP70/1133 and LSI-803 showed more resistant attributes towards the C. falcatum. Thus from the current study we concluded that the C. falcatum isolates vary among themselves with respect to the cultivar and places from which they were isolated. Cf 3 isolate was highly virulent because could able to produce more amount of phytotoxin.

ACKNOWLEDGEMENT

The authors would like to acknowledge Sugarcane Development Fund, GOI for funding the research

REFERENCES

Abang MM, Abraham WR, Asiedu R, Hoffmann P, Wolf

G, Winter S (2009). Secondary metabolite profile and phytotoxic activity of genetically distinct forms of *Colletotrichum gloeosporioides* from yam (*Dioscorea* spp.). Mycological Research. 113: pp. 130-140.

- Alexander KC, Rao MM, Mohanraj D (1985). Disease reaction catalogue on genetic resources II. Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, India. p. 226.
- Alleyne AT (2001). Characterization of Yam Anthracnose Phytotoxins and Population Genetics of *Colletotrichum gloeosporioides*. PhD thesis, University of the West Indies.
- Amarjit singh, Verma KS, Chander Mohan. (2006). Effect of different culture media on the growth and sporulation of *Colletotrichum gloeosporioides* causing guava anthracnose. Plant Disease Research. 21: p. 224.
- Beniwal MS, Satyavir, Virk KS (1989). Pathogenic variability in *Colletotrichum falcatum* incitant of red rot of sugarcane. Indian Phytopath. 42: pp. 95-99.
- Chona BL (1954). Studies on the diseases of sugarcane in India. IV. Relative resistance of sugarcane varieties to red rot. Indian J. Agric. Sci. 26: pp. 301-315.
- Gomez KA, Gomez AA (1984). Statistical Procedure for Agricultural Research. John Wiley and Sons, New York.
- Hussnain Z, Afghan S (2006). Impact of Major Cane Diseases on Sugarcane Yield and Sugar Recovery. Annual Report, Shakarganj Sugar Research Institute, Jhang, p. 43.
- Malathi P, Viswanathan R, Padmanaban P, Mohanraj D, Ramesh Sundar A (2002). Microbial detoxification of *Colletotrichum falcatum* toxin. research communication, Current Science. 83: pp. 745-749.
- Malathi P, Viswanathan R, Ramesh Sundar A, Padmanaban P, Prakasam N, Mohanraj D, Jothi (2011). Phylogenetic analysis of *Colletotrichum falcatum* isolates causing red rot in sugarcane. J. Sugarcane Res. 1,(1): pp. 69-74.
- Malathi P, Viswanathan R, Ramesh Sundar A, Prakasam, Padmanaban P, Jothi R, Renuka Devi SR, Poongothai M (2010). Variability among *Colletotrichum falcatum* patho types used for screening red rot resistance in Sugarcane. Sugarcane Intl. 28,(2): pp.47-52.
- Mohanraj D, Padmanaban P, Karunakaran M (2002). Association of phytotoxin produced by *Colletotrichum falcatum* Went in the red-rot disease of sugarcane. *Sugarcane* May/June, 21–23 and 30.
- Mohanraj D, Padmanaban P, Karunakaran M (2003). Effect of phytotoxin of *Colletotrichum falcatum* Went. (*Physalospora tucumanensis*) on sugarcane in tissue culture. Acta Phytopathol. Entomol. Hung. 38: pp. 21-28.
- Nageswararao GV, Patro TSK (2005). Pathotypes in *Colletotrichum falcatum* Went. and identification of resistant sugarcane clones. J. Mycol. Plant Pathol. 35: pp. 305-309.

- Olufolaji DB (2000). Rapid Toxin Test for Red-Rot Disease in Sugarcane. Sugar Tech. 2,(4): pp. 6-11.
- Olufolaji DB, Bomgboye AO (1986). Production partial characterization and bioassay of toxins from *Physalospora tucumanensis* Speg. sugarcane red-rot fungus. *Cryptogamie Mycologia* 7, pp. 331–334.
- Prema RT, Prabakar K, Mohammed FP, Kathikeyan G, Raguchander T (2011). Morphological and Physiological Characterization of *Colletotrichum musae* the Causal Organism of Banana Anthracnose. World J. Agric. Sci. 7,(6): pp. 743-754, 2011.
- Ramesh Sundar A, Viswanathan R, Nagarathinam S (2009). Induction of systemic acquired resistance (SAR) using synthetic signal molecules against *Colletotrichum falcatum* in sugarcane. Sugar Tech. 11,(3): pp. 274-281.
- Rangaswami G (1958). An agar block technique for isolating soil micro organisms with special reference to Pythiaceous fungi. *Science and Culture*, 24:85.
- Riker AJ, Riker RS (1936). Introduction to research on plant diseases. John Swift Co., St. Louis, Chicago. p. 117
- Satyavir, Singh N, Virk KS, Nageswarrao GV, Singh H, Mishra SR (2001). Pathogenic variability in sugarcane red rot system. pp. 109-114 in: Proc. National Symp. Role of Resistance in Intensive Agriculture. S. Nagarajan, and O. P. Singh, eds. Kalyani Publishers, Ludhiana.
- Srinivasan KV, Bhatt NR (1961). Red rot of sugarcane: Criteria for grading resistance. J. Indian Bot. Soc. 40: pp. 566-577.
- Viswanathan R, Malathi P, Padmanaban P (2003). Variation in sugarcane red rot pathogen *Colletotrichum falcatum* Went. In: Frontiers of Fungal Diversity in India. (Eds) Rao GP, Manoharachari C, Bhat DJ, Rajak RC, Lakhanpal TN), International Book Distributing Co, Lucknow. pp. 639-667.
- Viswanathan R, Mohanraj D, Padmanaban P, Alexander KC (1996). Synthesis of phytoalexins in sugarcane in response to infection by *Colletotrichum falcatum* Went. *Acta Phytopathologica et Entomologica Hungarica* 31, pp. 229–237.
- Viswanathan R, Padmanaban P, Mohanraj D, Jothi R (2000). Indirect-ELISA technique for the detection of the red rot pathogen in sugarcane (*Saccharum* spp hybrid) and resistance screening. Indian J. Agric. Sci. 70: pp. 308-11.
- Yoder OC, Turgeon BG (2001). Fungal genomics and pathogenicity.Current Opinion in Plant Biology 4: pp. 315–321.
- Yoshida S, Hiradate S, Fujii Y, Shirata A (2000). *Colletotrichum dematium* produces phytotoxins in anthracnose lesions of mulberry leaves. Phytopathology 90: pp. 285–291.