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Fungal biomasses are capable of treating metal-contaminated effluents with efficiencies several orders 

of magnitude superior to activated carbon (F-400) or the industrial resin Dowex-50. Additionally, fungal 
biomasses are susceptible to engineering improvements and regeneration of their capabilities. With 

regard to organic pollutants, excessive nutrients and dyes, fungi can remove them from wastewaters, 
leading to a decrease in their toxicities. However, the detoxification rates seem to be dependent on 

media and culture conditions. The postreatement by anaerobic bioprocesses of effluents that have 
been pretreated with fungi can lead to higher biogas than the original effluents. In addition to the 
degradation of organic pollutants, fungi produce added-value products such as enzymes (LiP, MnP, 

Lacc, amylase, etc.) and single-cell protein (SCP). Most research on fungal capacities to purify polluted 
effluents has been performed on a laboratory scale, hence there is a need to extend such research to 

pilot scale and to apply it to industrial processes. 
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INTRODUCTION 

 
Fungi are recognized for their superior aptitudes to 
produce a large variety of extracellular proteins, organic 
acids and other metabolites, and for their capacities to 
adapt to severe environmental constraints (Lilly and 
Barnett, 1951; Cochrane, 1958). For example, Aspergillus 
niger is the prototypical fungus for the production of citric 

acid (Clark, 1962; Lal, 1980; Grewal and Kalra, 1995), 
homologous proteins (esp. enzymes) and heterologous 
proteins (Archer et al., 1994; Prasertsan et al., 1997; 
Radzio and Kuck, 1997; Wongwicharn et al., 1999; Xu et 
al., 2000). Moreover,  
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Abbreviations; SCP: single-cell protein, LiP: lignin peroxidase,  
MnP: manganese peroxidase, MIP: manganese independent 
peroxidase, Lacc: laccase, COD: chemical oxygen demand, 
HTL: heat treatment liquor, BOD: biochemical oxygen demand, 

OMW: olive mill wastewaters, WWTP: wastewater treatment 

plant. 

 
 
 
 

 
Phanerochaete chrysosporium is the model of white-rot 

fungi for the production of peroxidases (Bumpus et al., 
1985; Rodriguez et al., 1999). Beyond the production of 
such relevant metabolites, fungi have been attracting a 
growing interest for the biotreatment (removal or 
destruction) of wastewater ingredients such as metals, 
inorganic nutrients and organic compounds (Akthar and 
Mohan, 1986; Field et al., 1993; Feijoo and Lema, 1995; 
Palma et al., 1999; Coulibaly, 2002).  

The focus of this review therefore concerns the use of 
fungi to remove or degrade various wastewater 
constituents. Some instances of synthetic wastewaters 
are reported, but only the contributions of fungal biomass 
in the biological treatment of raw wastewater are 
discussed in some length. 
 
 
DOMESTIC SEWAGE 

 
Domestic sewage contains carbon and nutrient sources 

that can be removed by fungal biomass. In an early 
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investigation, Thanh and Simard (1973) demonstrated the 
capacities of seventeen fungal biomasses to remove 
phosphates (84.1%), ammonia (73.3%), total nitrogen 
(68.1%) and chemical oxygen demand (COD) (39.3%). 
They obtained fungal growth on this effluent with an 

accumulation of biomass (451.2 mg l
-1

) that contained 

protein (47% g g
-1

). There was variability in fungal 

capacities as to the removal of pollutants (see Table 1). 
In fact, Trichothecium roseum was the best in phosphate 
removal (97.5%), whilst Epicoccum nigrum, Geotrichum 
candidum and Trichoderma sp. were the best in the 
removal of ammonia (84%), total nitrogen (86.8%) and 
COD (72.3%), respectively. Concerning cell-protein 
production, Paecilomyces carneus had the highest ratio 
of protein to biomass (92.5%). However, this fungus did 
not grow very well on domestic sewage. In our laboratory, 
domestic wastewater pretreatment by a strain of A. niger 
has been investigated under transient conditions. This 
fungal biomass removed about 72% of COD and 65% of 
protein (Coulibaly, 2002). Despite the differences 
between the bioprocess investigated in these two studies, 
COD and protein removal rates are in the same order. 
The overall feasibility of domestic wastewater treatment 
under sewer -simulating conditions has been explored 
recently both experimentally and by simulation (Coulibaly, 
2002; Coulibaly et al., 2002; Coulibaly and Agathos, 
2003). The heat treatment liquor (HTL) of an activated 
sludge was decolourised by Coriolus hirsutus (Fujita et 
al., 2000). This fungal strain exhibited a strong ability to 
decolourise HTL (70%) with an accumulation of 
manganese independent peroxidase (MIP) and 
manganese peroxidase (MnP). Optimising the culture 
medium by adding nitrogen and carbon sources and 
improving the biomass quality resulted in increased 
colour removal capacity by C. hirsutus (Kumar et al., 
1998; Miyata et al., 2000; Fujita et al., 2000). Although 
fungal applications have shown good capacities on 
sewage treatment, they are still underutilised in practice. 
This could be explained, in part, by a widespread a priori 
assumption that fungal strains do not perform as well as 
bacteria. 
 

 

AGROINDUSTRIAL EFFLUENTS 

 

Industries of olive oil, tapioca starch, distillery (molasses), 
cotton bleaching, pulp and paper processing produce 
several billion litres of coloured, often toxic and harmful 
wastewaters over the world annually. Those effluents 

have strong concentrations of COD (10- 200 g l
-1

), phenol 

and its derivatives (0.5-8 g l
-1

) and often contain proteins, 

cyanides, chlorinated lignin compounds and dyes (Borja 
et al., 1992, 1997; Nieto et al., 1992; Bengtsson and 
Triet, 1994; Garcia et al., 1997; Jimenez and Borja, 1997; 
Yesilada et al., 1998; Kahmark and Unwin, 1999). The 
large amount of lignin derivatives of these effluents is 
responsible of their dark-brown colour (Calvo et al., 

  
  

 
 

 

1995). The phenolic compounds of such wastewaters 
exert some bactericidal effects on wastewater treatment 
plant (WWTP) microorganisms (Borja et al., 1996; Fang 
and Chan, 1997; Vassilev et al., 1997; Sayadi et al., 
2000). Fungal pretreatment (Table 2) of these effluents 
under aerobic conditions makes it possible to obtain 
phenol reduction (51-100%), good decolourisation (31-
100%), biochemical oxygen demand (BOD) reduction up 
to 85.4%, and enzyme production (protease, Lacc (EC 
1.10.3.2); LiP (EC 1.11.1.14), MnP (EC 1.11.1.13), 
amylase, etc.) (Vinciguerra et al., 1995; Yesilada et al., 
1995; Garcia et al., 1997, 2000; D’Annibale et al., 1998; 
Setti et al., 1998; Gharsallah et al., 1999; Robles et al., 
2000; Kissi et al., 2001). Amendment of olive mill 
wastewater (OMW) composition (addition of co-substrate, 
nutrients, salts) influences the removal of COD, phenols 
and colours (Yesilada et al., 1998). In fact, Garcia et al. 
(2000) noted that G. candidum removed COD but did not 
degrade phenols. However, by optimising OMW 
composition (COD:N:S = 100:5:2) for G. candidum 
growth, Assas et al. (2000) obtained a complete 
degradation of phenols and 70% decolourisation. Miranda 
et al. (1996) maximized colour removal from molasses 
wastewaters (up to 69%) with A. niger, after the 
amendment of the culture medium with co-substrate and 

mineral nutrients (MgSO4, KH2PO4 and NH4NO3). Some 

of the consequences of OMW pretreatment by fungi are 
the 23- to 30-fold higher increases in biogas production 
and the fertilizing effect on plants (Trifolium repens) 
compared to non-pretreated effluent (Borja et al., 1993, 
1995 a,b,c; Jimenez and Borja, 1997; Vassilev et al., 
1998).  

The influence of co-substrate (see Table 3) upon paper 
and pulp industrial wastewater treatment, detoxification 
and decolourisation rates has also been observed with 
Ceriporiopsis subvermispora , P. chrysosporium, 
Trametes versicolor, Rhizopus oryzae and Rhizomucor 
pusillus (Manzanares et al., 1995; van Driessel and 
Christov, 2002; Nagarathnamma and Bajpai, 1999; 
Nagarathnamma et al., 1999). The mechanisms of 
decolourisation of agroindustrial effluents by fungi are 
reported to include biosorption and/or biodegradation 
(Ohmomo, 1988; Sayadi and Ellouz, 1995; Soares and 
Duran, 1998; Christov et al., 1999; Nagarathnamma et 
al., 1999). Some “mycoreactors” such as rotating 
biological contactor (MYCOR), trickling filter reactor 
(MYCOPOR) and continuous column reactor have been 
developed to decolourise pulp and paper wastewaters 
(Eaton et al., 1982; Messner et al., 1990; Bajpai et al., 
1993). These reactors were able to run over several 
weeks by maintaining their colour removal rates. 
Ligninolytic enzymes are also involved in the degradation 
of organic compounds, including dyes (see below), within 
these effluents (Chivukula et al., 1995). The enzymatic 
oxidation mechanism of those pollutants has been well 
discussed elsewhere and is not the aim of this 
contribution (Young and Yu, 1997; Mester and Tien, 
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Table 1. Examples of fungi used to treat domestic sewage, starch processing and metal bearing effluents. Optimal culture condition and the effect of fungal pretreatment are reported. 

 

Effluents Fungi Treatment  References 
 

  Reactor and medium handling Parameters  
 

 Penicillium citricum, Steganosporium Shake-flask COD (72.3%); Phosphates (97.5%); N- Thanh and Simard (1973) 
 

 piriforme, Arthrinium arundis, Fusarium  total (86.8%); Dry matter (684 mg l
-1

);  
 

 oxysporum, Cladosporium herbarum,  Protein content (205 mgl
-1

)  
 

 Cladosporium cladosporioides,    
 

 Scopulariopsis brevicaulis, Mucor hiemalis,    
 

s
e

w
a

g
e

 

Trichothecium roseum, Epicoccum nigrum,    
 

Helminthosporium sativum, Ulocladium    
 

atrum, Geotricum candidum, Trichocladium    
 

asperum, Paecilomyces carneus,    
 

D
o

m
e

s
ti

c
 

Trichoderma sp., Chrysosporium    
 

pannorum    
 

    
 

Aspergillus niger Stirred tanks reactor in series COD (72%); N-total (65.4%) Coulibaly (2002) 
 

 
 

 Coriolus hirsutus Continuous immobilized Decolorization (80%, 2 d); MnP (60 U l
-
 Miyata et al. (2000) 

 

  bioreactor; addition (nutrient 
1
);  

 

  (NH4 (100 mg l
-1

), NO3 (100 mg l
-
 MIP (40 U l

-1
)  

 

  
1
); MnSO4); co-substrate   

 

  (glucose, 0.5%)   
 

 A. oryzae; Rhizopus arrhizus; Trichoderma Shake-flask, air lift bioreactor (45 TOC (44-88%); SS (95%); starch Jin et al. (1999abc; 2001) 
 

S
ta

rc
hp

ro
ce

s

si
ng

ef
flu

en
t viride; T. reesei; G. candidum; A. terreus; l); addition of nutriment hydrolysis (53-100%); biomass (2-5.6 g  

 

R. oligosporus (NH4)2SO4; Urea; NH4NO3; l
-1

); protein (48.8% of biomass weight);  
 

 NaNO3; K2HPO4; KH2PO4) COD (97.8%); glucoamylase (3.94 U  
 

  ml
-1

)  
 

A. niger; A. oryzae Shake-flask COD (90%); biomass and amylase Fujita et al. (1993); 
 

  

production Murado et al. (1993) 
 

   
 

     
 

 A. niger, P. simplicissimum, Geotrichum Shake-flask, presence of co-ions, A. niger (Cu (91%); Zn (70%)) Price et al. (2001); Gomes 
 

e
ff

lu
e

n
t sp., Fusarium verticillioides, Rhizoctonia biomass (produced)  et al. (1998, 1999); Gomes 

 

solani, Aquathanatephorus pendulus;   and Linardi (1996); 
 

   Karavaiko et al. (1996) 
 

A. niger, A. flavus, A. fumigatus; R. Shake-flask; presence of co-ions, Metal removal (82-100%) Balakrishnan et al. (1994); 
 

b
e

a
ri

n

g
 

Arrhizus; A. terrus biomass (industrial waste,  Niyogi et al.(1998) 
 

 produced)   
 

Mucor meihi Shake-flask; biomass (industrial Sorption (0.7-1.15 mmol g
-1

) Tobin and Roux (1998) 
 

M
e

ta

l 

 waste), dilution (1-20)   
 

    
 

A. niger Shake-flask; presence of co-ions, Metal removal (75%) Akthar and Mohan (1995) 
 

  biomass (produced)   
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Table 2. Examples of fungi used to treat distillery wastewaters. Optimal culture condition and the effect of fungal pretreatment are reported.  

 
Effluents 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D
is

ti
ll
e

ry
 W

a
s
te

w
a

te
rs

 

 
 
 

Fungi Treatment  References 

 Reactor and medium handling Parameters  
A. awamori var. kawachi Shake-flask; Jar-fermentor (30 l) Specific resistance of culture broth (97.5% Kida et al. (1995) 

  decrease); BOD (56%); TOC (72%);  

  Phosphates (80%) protein in mycelium (40%)  

  Increased TOC removal of anaerobic  

  pretreated effluent  
A. niger; A. awamori Shake-flask; continuous bubble OMW (decolorization (69%, 3-4 d); COD Miranda et al. (1996); 

 reactor; co-substrate (sucrose, (78%)) Yang and Lin (1998) 
 fructose, glucose); MgSO4 (1 gl

-1
); Thin stillage (protease (200 U ml

-1
); biomass  

 KH2PO4 (0.5 gl
-1

); NH4NO3 (1.8 gl
-1

); (30 g l
-1

))  

 peptone (5%); rice (3%)   
P. chrysosporium; G. candidum; Dilution (50%) Decolorization (53%, 10 d); growth rates FitzGibbon et al. (1998) 
C. versicolor; Mycelia sterilia  inhibition below 50% of dilution; decoloration  

  of melanoidins (80%) by P.  

  chrysosporiumJAG-40  

G. candidum Shake-flask; Jar-fermentor (7 l); Decolorization (80%), peroxidase Kim and Shoda (1999) 
 Polyurethane-foam; immobilization; accumulation  

 co-substrate (glucose, 0.5-1%)   
    

Trametes versicolor Shake-flask; inoculum size, sucrose Decolorization (82%); COD (77%); NH4
+
 Benito et al. (1997) 

 addition (0.3%); KH2PO4 (0.5 gl
-1

); (36%)  

    
C. hirsutus Shake-flask; continuous immobilized Decolorization (76%, 2 d); TOC (45%); Miyata et al. (2000) 

 polyurethane-foam reactor; MnSO4;   

 co-substrate (glucose, ethanol)   
Flavodon flavus; P. decumbens Shake-flask; aeration; co-substrates Decolorization (80%); MnP(400 U l

-1
); Lacc Raghukumar and 

 (sucrose, glucose, mannose, mannitol, (550 nkat l
-1

); increase of anaerobic digestion Rivonkar (2001); 
 xylose, arabinose, fructose, glycerol) rate of aerobic pretreated effluent by P. Jimenez and Borja 

 tested at 10% decumbens (1997) 
    

Ceriporopsis subvermispora Shake-flask; co-substrat (glucose, Color (90%); COD (45%); lignin (62%); AOX Nagarathnamma et al. 
 0.1%; sucrose; lactose; (32%); EOX (36%) (1999) 
 microcrystalline cellulose;   

 carboxymethyl cellulose; xylose;   

 starch; athyl alcohol; bagasse pith;   

 cheese whey; prehydrolysate liquor;   

 molasses)    
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Table 3. Examples of fungi used to treat wood processing wastewaters. Optimal culture condition and the effect of fungal pretreatment are reported.  

 
Effluents 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

W
o

o
d

 p
ro

c
e

s
s

in
g

 w
a
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te
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Fungi Treatment  References 
 Reactor and medium handling Parameters  

Sporotichum pulverulentum Batch reactor (25 m
3
); continuous laboratory Biomass (5.7 g l

-1
); Protein (42%); Protein Ek and Eriksson 

(P. chrysosporium) fermentor (10 l) productivity (132 mg l
-1

); cellulase (0.2 U ml
-1

); (1980); Thomke and 
  Suspended particles (88%); BOD 73%); COD Rundgreen (1980) 

  52%); feedstuff (rat, pigs and sheep)  
    

A. foetidus Shake-flask; dilution (10%) Decolorization (90%, 2 d) Sumathi and Phatak 
   (1999) 
C. versicolor; Shake-flask; immobilization in beads of Ca- Decolorization of suspended biomass (60%, 6 Livernoche et al 
P. chrysosporium; Pleurotus alginate gel; dilution (16.7%); co-substrates d); decolorization of immobilized biomass (80%, (1980); Marwaha et al. 
ostreatus; polyporus (sucrose 0.5%, xylose, glucose, glycerol, 3 d) (1998) 
versicolor ethanol)   
P. chrysosporium; Shake-flask; co-substrate (glucose); Mn (0.3 Decolorization (88%), LiP (450 nmol min

-1
 ml

-1
); Perez et al. (1997) 

Phanerochaete flavido-alba mg l
-1

); culture age MnP (800 nmol min
-1

 ml
-1

)  

    
P. chrysosporium; Shake-flask P. chrysosporium (decolorization, 50%, 7 d; lignin Calvo et al. (1995 a b) 
Ganoderma australe;  pyrolisis compounds, 57% reduction;);  

Coriolopsis gallica ;  G. australe (decolorization, 50%, 7 d; lignin  

Paecilomyces variotii  derivated compounds 48% increased );  

  C. gallica (decolorization, 48%, 7 d; lignin-  

  derivated compounds 77% reduction);  

  P. variotii (decolorization, 85%, 7 d; lignin-  

  derivated compounds 78% reduction)  
T. versicolor Shake-flask; continuous feeding bioreactor; Decolorization (90 %, 9 d) Lacc (700 U l

-1
, 10 Manzanares et al. 

 culture age; dilution 30%); SO4Mn (23 mg l
-1

); d); MnP (25 U l
-1

, 7 d); phenols (90%); COD (1995); Mehna et al. 
 co-substrate (glucose, 0.3%; sucrose; starch; (69%) (1995) 
 ethanol, carboxymethyl-cellulose; pulp and   

 bagasse pith)   
    

Sordaria fimicola; Shake-flask; pH (4.5; 8.2) S. fimicola (decolorization, 55%, Lacc (100 Raghukumar et al. 
Halosarpheia ratnagiriensis  nkatal ml

-1
)); H. ratnagiriensis (decolorization, (1996) 

  85%; Lacc (100 nkatal ml
-1

))  
Ceriporopsis Shake-flask; co-substrat (glucose, 0.1%; Color (90%); COD (45%); lignin (62%); AOX Nagarathnamma et al. 
subvermispora; R. oryzae sucrose; lactose; microcrystalline cellulose; (32%); EOX (36%) (1999); 

 carboxymethyl cellulose; xylose; starch; athyl  Nagarathnamma and 
 alcool; bagasse pith; cheese whey;  Bajpai (1999) 
 prehydrolysate liquor; molasses)    
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2000). Beneficial effects of the fungal pretreatment of 
pulp mill effluent upon its subsequent anaerobic digestion 
have been reported (Feijoo et al., 1995). Anaerobic 
digestion of Kraft pulp mill effluent pretreated by P. 
chrysosporium gave increased degradation of high 
molecular weight compounds (79%) according to these 
authors. Also, an important decolourisation (79%) was 
also observed, that was correlated with MnP 
accumulation.  

With regard to other agroindustrial wastewaters that are 
relatively non toxic (e.g. dilute lignocellulosics, starch, rice 
and mussels processing, sauce production, etc.) (see 
Table 1), fungal growth on them has been reported to 
produce single-cell protein (SPC), enzymes, chitosan, 
amylolytic preparations and a good reduction of COD (up 
to 97.8%) (Morimura et al., 1992, 1994 a,b; Murado et al., 
1993; Kida et al, 1995; Yang and Lin, 1998; Yokoi et al., 
1998; Jin et al., 1998, 1999, 2001). 
 
 
DYED EFFLUENTS 

 

The effluents of pharmaceutical industries, dyeing, 
printing, photographs, textile and cosmetics contain dyes 

(McMullan et al, 2001). For example, over 7 X 10
7
 tons 

dyes are produced annually worldwide, of which about 
10% are lost in industrial effluent (Vaidya and Datye, 
1982). Wastewaters from textile industries are a complex 
mixture of many polluting substances such as 
organochlorine-based pesticides, heavy metals, pigments 
and dyes. Their compositions have been discussed in 
detail by O’Neill et al. (1999). The majority of these dyes 
are slowly removed by the WWTP, because of their 
toxicities to indigenous microorganisms. Dye removal 
from wastewaters by established WWTP processes are 
expensive and need careful application (Vandevivere et 
al., 1998; Robinson et al., 2001). Furthermore, following 
anaerobic digestion, nitrogen-containing dyes are 
transformed into aromatic amines that are more toxic and 
mutagenic than the parent molecules (Shaul et al., 1985; 
Chung and Stevens, 1993; Ganesh et al., 1994). To 
overcome these difficulties, fungi are being investigated 
for their potential to decolourise effluents. Among them, 
the most widely studied are the white-rot fungi P. 
chrysosporium (a model, primarily laboratory organism) 
and T. versicolor (a promising organism for industrial 
applications).  

Nowadays other fungi have also shown some 
capacities to remove dyes from industrial effluents. Dyes 
are removed by fungi by biosorption (Contato and Corso, 
1996; Tatarko and Bumpus, 1998; Payman et al., 1998; 
Zheng et al., 1999; Fu and Viraraghavan, 2000), 
biodegradation (Nigam et al., 1995; Conneely et al., 
1999) and enzymatic mineralisation (LiP, MnP, 
manganese independent peroxidase (MIP), Lacc) (Young 
and Yu, 1997; Ferreira et al., 2000; Ollikka et al., 1998; 
Podgornik et al., 1999; Wong and Yu, 1999; Zheng et al., 

  
  

 
 

 

1999; Pointing and Vrijmoed, 2000; Wesenberg et al., 
2003). However, one or more of these mechanisms could 
be involved in colour removal, depending on the fungus 
used. Other fungal biomasses applied to the 
decolourisation of raw textile effluents include Botrytis 
cinerea, Endothiella aggregata, Geotrichum fici, R. 
oryzae, Tremella fuciformis, Xeromyces bisporus, 
Hirschioporus larincinus, Inonotus hispidus, Phebia 
tremellosa and C. versicolor (Banat et al., 1996; Kirby, 
2000; Polman and Breckenridge, 1996). It is reported that 
raw effluents can only partially be decolourised upon 
fungal treatment (maximum of 49-80% but often much 
less). For example, a complex mixture of real textile 
effluents containing many reactive dyes could be 
decolourised upon partial dilution by using the agaric 
white-rot fungus Clitocybula dusenii (Wesenberg et al., 

2002). The weak decolourisation of these effluents by 
complete cultures could be explained by the influences of 
temperature, pH, salts, inhibitory molecules (sulphur 
compounds, surfactants, heavy metals, bleaching 
chemicals), carbon and nutrients within these solutions 
(Chao and Lee, 1994; Jacob et al., 1998; Swamy and 
Ramsay, 1999; Mester and Tien, 2000). Concerning 
enzymatic (Lacc, LiP, MnP) degradations, these reactions 
are quite complicated, involving numerous low molecular 
weight cofactors that serve as redox mediators (Reyes et 
al., 1999; Wesenberg et al., 2003). These cofactors, in 
addition to the enzymes themselves, influence fungal 
colour removal rates. 
 

 

METAL CONTAINING EFFLUENTS 

 

Metallurgical industries, mining, surfaces cleaning, waste 
incinerators produce large wastewater polluted by metals. 
Dissolved metals escaping into the environment pose a 
serious health hazard. Because they accumulate in living 
tissues throughout the food chain, which has human at its 
top. There is a need to remove heavy metals before they 
enter the complex ecosystem. Physicochemical 
treatments evolved in very diluted water-containing 
metals (precipitation, electrochemical, flocculation, 
coagulation, ion exchange) are expensive. Utilization of 
biomasses in general (Volesky, 1994; Veglio and 
Beolchini, 1997; Kratochvil and Volesky, 1998; McKay et 
al., 1999; Gupta et al., 2000) and particularly that of fungi 
are considered to be best alternatives for those waters 
purification (Kapoor and Viraraghavan, 1995; Modak and 
Natarajan, 1995; Sag et al., 1998; Volesky and Holan, 
1995; Atkinson et al., 1998; Kratochvil and Volesky, 1998; 
Mogollon et al., 1998; Savvaidis, 1998; Tobin and Roux, 
1998). Indeed, the purification of the water-containing 
metals by fungal biomass is cheaper and it presents the 
following advantages: (i) production of residual small 
volume; (ii) possibility of valorisation of fungal waste 
biomasses from industrial fermentations; (iii) fast removal 
and (iv) easy installation of the process. 
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Fungal biomasses walls are composed of 
macromolecules (chitin, chitosan, glucan, lipid, 
phospholipides), which contain carboxyl groups (R-
COOH), amino groups (R2NH, R-NH2), phosphates, 
lipids, melanin, sulphates (R-OSO3-) and hydroxides 
(OH-) (Caesartonthat et al., 1995; Kapoor and 
Viraraghavan, 1998 a,b; Fogarty and Tobin, 1996; Kapoor 
et al., 1999). Those functional groups are metals sorption 
sites (Tsezos and Volesky, 1982; Mullen et al., 1992; 
Guibal et al., 1995; Gardea Torresdey et al., 1996; 
Kapoor and Viraraghavan, 1997; Matheickal and Yu, 
1997; Zhang et al., 1998; Sarret et al., 1999; McHale and 
McHale, 1994; Mashitah et al., 1999; Tereshina et al., 
1999; Zhou, 1999). Fungi remove metals essentially by 
adsorption, chemisorptions (ion exchange), complexation, 
coordination,   chelation,   physical   adsorption   and 
microprecipitation (Guibal et al., 1995; Huang and Huang, 
1996; Kapoor and Viraraghavan, 1997; Sarret et al., 
1998). There are also possible oxydo-reduction taking 
place in the biosorbent. When metals are removed by 
ionic exchange, they generally replace K+, Mg2+, Ca2+ 
and H+  contained in biomasses (Akthar et al., 1995; 
Zhou, 1999; Gomes et al., 1999; Mashitah et al., 1999). 
Table 1 gives a synthesis of some works on metals 
removal from wastewaters by some fungi. Biomasses 
used to remove metals from wastewaters are generally 
produced against few residual biomasses from 
fermentation (Fourest et al., 1994; Meyer and Wallis, 
1997). Metals sequestrations by fungi  are  influenced  by  
the  mineral  and  organic compositions content of the 
medium in which biomasses are   produced.   Biomasses   
granulometries   and physiological  states  (living  or  
dead),  co-ions,  metals concentrations and physical 
parameters (temperature, pH, ionic force, presence of 
others metals) influence also metals removal from 
polluted waters (Volesky, 1994; Akthar et al., 1995; 
Gomes and Linardi, 1996; Modak et al.,  1996;  Gardea  
Torresdey  et  al.,  1997;  Yu  and Kaewsan,  1999;  
Zhou,  1999).  Metals  by  fungi  from various  raw  
effluents  (gold  mining  effluent,  tanning effluent,  swine  
water,  polluted  lake  waters)  are sometimes completely 
removed (see Table 1). However, these outputs depend 
on the metal and fungus involved. To  increase  fungal  
biomasses  removal  capacities, some of them undergo 
physicochemical treatments (soda or acidic treatments, 
insertion of functional groupings, heat treatment) (Akthar 
et al., 1995; Akthar and Mohan, 1995; Kapoor et al., 
1999; Kramer and Meisch, 1999; Yin et al., 1999; Yan 
and Viraraghavan, 2000). Moreover, A. niger biomass 
treatment by soda, makes it possible to adsorb 2.5 to 
1000 mg Ag l-1  of Ag+  in polluted water (Akthar et al., 
1995). In the same way, Kapoor et al. (1999) obtained 
with a soda treated biomass of A. niger, the removal rates 
of Cd2+, Cu2+ and Pb2+ superiors to that of activated 
carbon (F-400). Akthar and Mohan (1995) used the same 
type of biomass like precedent authors, and they obtained 
the removal rates of Zn2+  and Cd2+ superiors to that of 

Dowex-50 resin. An  insertion  of carboxyl and amino 
groups in A. niger biomass walls, makes it possible to 
obtain an adsorption rate ranging in the order of 172-1064 
mmol (kg biomass)

-1
 for Cd

2+
, Co

2+
, Ni

2+
 and Zn

2+
 (Kramer 

and Meisch, 1999). A simple detergent and alkaline 
solutions treatment of M. rouxii biomass was sufficient to 
obtain an increase in its adsorption capacity (Yan and 
Viraraghavan, 2000). Fungal biomasses that have 
sequestered metals can be regenerated following their 
washing with HNO3 (0.05 N) and/or with Ca

2+
, Mg 

2+
 and 

K
+
 (0.1 M) (Akthar et al., 1995, 1996; Kapoor et al., 1999). 

 
 
DISCUSSION 
 
Essential works on fungal utilization for raw wastewaters 
biopurification have been laboratory tests. This situation 
can be explained by the fact that fungal utilization in 
environmental biotechnology is still under investigation to 
assess information’s on process implementation. To gain 
confidence  with  the  results,  these  investigations  are 
performed on synthetics wastewaters. The good results 
obtained in laboratory tests depend on growth medium 
optimisation   (addition   of   co-substrate,   nutrients, 
mediators molecules, physical parameters optimisation) 
and a good handling of biomasses. However, these works 
amongst other things prove some advantages when a 
mycoreactor is introduced in effluents treatment lines. In 
fact, there are some reductions of bactericidal effects  
and  an  increase  in  biogas  production. Consequently 
work on pilot and the development of treatment plants are 
to be encouraged. The  degradation  and  the  
mineralisation  of  some recalcitrant dyes and 
organochlorinated compounds are effective  by  certain  
white  rot  fungi.  However  fungal aptitudes for raw 
wastewaters remain dependent on salts concentration, 
culture conditions and especially on the amendment of 
carbon and nutriment sources. Among the co-susbstrates 
tested for effluent pretreatment by fungi, glucose and 
sucrose were the best, when they were used at 5 to 10 g 
l-1. To minimise the mycoreactor integration cost in the 
treatment line, the co-substrate could be provided  by  
feeding  the  reactors  with  amylaceous effluents or 
others wastewaters rich in sucrose or glucose as these 
carbon sources proved to be the best co- substrate. 
About the growth medium impact on fungal capacities to 
decolourise HTL, one could use C. hirsutus in post 
processing of an activated wastewater, because of its 
sensitivity to organic nitrogen. The oxidoreductases 
activities could be more significant, thanks to the use of 
substrate  that  could  ensure  the  role  of  mediators’ 
molecules and guarantee the generation of H2Ò2 in the 
reaction medium. Salts constraint could be overcome 
while proceeding to the desalinisation of the effluents 
before their treatment with fungi. As regards  metal  
removal,  a  standardization  of adsorption rates unit and 
the rigorous  description  of 
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biomass morphology (pellet diameter) will allow a better 

comparison of fungal capacities and a guide for the best 
choice of fungi. Biomass grinding to produce small 

particles and their engineering to increase their capacities 
to remove specific metals are promising way for fungal 
biosorption. Utilization of residual biomasses from 

fermentation is still minimal nowadays (Knapp and 
Newby, 1999); one needs to encourage such practice, 

because this constitutes a way of making use of them. 
 
 

CONCLUSION 

 

This review highlighted the capacities of certain fungi to 
pretreat raw wastewaters. However, essential works on 
this subject are still laboratories tests and they are of less 
industrial scale application. The white rot fungi are 
suitable for the degradation of a large variety of pollutants 
and to produce at the same time metabolites of great 
added values (proteins, enzymes). However, an 
optimisation of the culture media in carbon sources or 
nutrients and mediators molecules is very important to 
obtain a good output of pollutants degradations. With 
regard to other fungi, those also contribute to effluents 
purification with proteins and enzymes productions (for 
example, A. awamory and A. niger). Some residual 

biomasses from fungal fermentation, have been used to 
remove metals and dyes from effluents. Ultimately, the 
fungal biomasses present many assets for biopurification 
of wastewaters. 
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