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Thin cell layer (TCL) technology originated almost 30 years ago with the controlled development of 

flowers, roots, shoots and somatic embryos on tobacco pedicel longitudinal TCLs. Since then TCLs 

have been successfully used in the micropropagation of many ornamental plant species whose 

previous in vitro regeneration was not successful using conventional methods. This review examines 

the fundamentals behind TCLs, and their application in ornamental plant micropropagation and 

transformation. 
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INTRODUCTION 

 
The mechanisms governing plant growth and 
development are one of the most fundamental and 
applied areas of modern plant research. Higher plants 
develop from a single-celled zygote into a multicellular 
organism through co-ordinated cell divisions, and when 
this process occurs without patterning, disorganized 
callus tissue is produced (Teixeira da Silva and Nhut, 
2003). Body organization is generated by two distinct 
processes: the primary organization of the body, 
represented by the seedling, and including the shoot and 
root meristems, is laid down by embryonic pattern 
formation, while the meristems then take over to produce 
the adult plant during post-embryonic development. Plant 
organs are composed of ordered collections of various 
cell types differing in their shape, size, position, function 
and DNA content. Cell division, separation and 
morphogenesis are intimately connected, and 
ontogenesis is determined by the genome and is 
influenced by external signals. Correct control of the cell-
division cycle is required for the elaboration and 
execution of developmental programmes, while 
patterning genes determine overall architecture of the 
plant. Cell division is a critical activity during the growth 
and development of a plant providing the building blocks 

 
 
 
 

 
for the differentiation of in vitro thin cell layers (TCLs) or 

in planta tissues and organs, and contributes to the 

overall size of the individual.  
This review serves to introduce to readers the concept 

of a TCL, its model systems, and applications in higher 
plant tissue and organ culture, and genetic transformation. 
Moreover TCL technology is a solution to many of the 
issues currently hindering the efficient progress of 
ornamental and floricultural crop improvement, since it 
addresses the issue of plant breeding at the first stage of 
the problem: regeneration. Since the regeneration of 
specific organs may be effectively manipulated through 
the use of TCLs, in conjunction with specific controlled in 
vitro conditions and exogenously applied plant growth 
regulators (PGRs), many problems hindering the 
improvement of in vitro plant systems are potentially 
removed. I will demonstrate, through this comprehensive 
review, the truth of this claim, and that the application and 
success of this system in floricultural and ornamental 
crops is widespread. The possibilities of this tool for crop 
(ornamental and floricultural) improvement are endless, 
and go tightly hand-in-hand with molecular and genetic 
engineering tools. Moreover this system provides a means 
of mass propagation of a species of interest, and 



 
 
 

 

has thus profound potential economic spin-offs. The TCL 

system would provide a simple but efficient 
micropropagation system for countries in Africa with 

limited resources and facilities. 

Although beyond the scope of this review, TCL 
technology has also been effectively used in the 
micropropagation of vegetable, leguminous, and medicinal 
plants, including Amaranthus edulis (amaranth), Beta 
vulgaris (sugar beet), Brassica napus (oilseed rape), 
Lupinus spp. (lupin), Panax ginseng (ginseng), and 
Phaseolus vulgaris (common bean) (Nhut et al., 2003b); 
cereals and grasses, including Digitaria sanguinalis (large 
crabgrass), Oryza sativa (rice), Sorghum bicolor 
(sorghum), and Zea mays (corn) (Nhut et al., 2003c); 
fruits, including Musa sp. (banana), Citrus spp. (orange, 
lemon, mandarin), Poncirus trifoliata (trifoliate orange), 
Cocos nucifera (coconut palm), Garcinia mangostana 
(mangosteen), Lycopersicon esculentum (tomato) (Nhut et 
al., 2003d); woody plants, including Bambusa spp. and 
Dendrocalamus spp. (bamboo), Manihot esculenta 
(cassava), Pinus radiata (Monterey pine), Paulownia 
fortunei (paulownia), Populus spp. (poplar), Pseudotsuga 
manziesii and Sequoiadendron spp. (conifers), Garcinia 
mangostana (garcinia/kokum), and Rosa spp. (rose) (Nhut 
et al., 2003e, 2003f). 
 

 

TCL CONCEPT AND SYSTEM 

 

The thin cell layer (TCL) system consists of explants of a 
small size excised from different plant organs (stems, 
leaves, floral inflorescences, flower primordia or floral 
organs, cotyledons, hypo-/epicotyl, apical zone or 
embryo), either longitudinally (lTCL), or transversally 
(tTCL). lTCLs contain only one tissue type, such as a 
monolayer of epidermal cells, whereas tTCLs include a 
small number of cells from different tissue-types: 
epidermal, cortical, cambium, perivascular and medullar 
tissue, parenchyma cells (Tran Thanh Van, 1980).  

TCL systems allow for the isolation of specific cell or 
tissue layers, which, depending on the genetic state and 
epigenetic requirements, and in conjunction with strictly 
controlled growth conditions (light, temperature, pH, 
PGRs, media additives and others) may lead to the in 
vitro induction of specific morphogenic programs. The 
capacity of a TCL to enter a program depends upon a 
number of factors, including correct signal perception and 
transduction, the capacity of the internal genetic 
machinery to respond and react to these signals and in 
the latter case, may depend on the physiological state 
and origin (tissue and organ) of the TCL, stress factors 
applied to the TCL, and apoptotic or gene silencing states 
of the tissue or cells within it. Should this first phase be 
achieved then cells within the TCL may redifferentiate 
into organs exhibiting correct developmental patterns 
leading to phenotypically normal organ architecture 
(Teixeira da Silva and Nhut, 2003a). TCLs have been 

 
 
 
 

 

used as a model system to analyse biochemical and 

molecular markers of differentiation (Biondi et al., 2001). 

Within the TCL system the morphogenic and 
developmental pathways of specific organs – derived 
from other specific or non-specific cells, tissues or organs 

– may be clearly directed and controlled. Moreover, it 
allows for the study of cytological, physiological, 
biochemical and molecular changes occurring in a 
particular morphogenic program. This strict regulation of 
the morphogenic pathways will allow for, inter alia, the 
controlled production of somatic embryos and their 
subsequent use as synthetic seed, or as mass 
propagation units. It would also enhance the production 
capacity of secondary metabolites and pharmaceuticals 
through transgenic organ cultures, such as those 
produced by Agrobacterium rhizogenes, or by other 
autotrophic bioreactor plant cultures. The efficiency of 
genetic transformation is clearly enhanced as a result of 
cell and/or tissue specificity of gene insertion, and the 
subsequent successful and controlled regeneration of 
transformed tissue. Moreover, the use of TCLs allows for 
the potential production of in vitro flowers (independent of 
or in conjunction with photoperiod, vernalization and/or 
other environmental cues), and can be used as an 
explant source, or potentially as a new, long-term 
ornamental propagule, eliminating the problem of post-
harvest deterioration. 
 

 

MODEL SYSTEMS: TOBACCO, LILY AND 

CHRYSANTHEMUM 
 
Three plants (Nicotiana tabacum, Lilium longiflorum, 
Dendranthema grandiflora) have been intensively studied 

in terms of morphogenesis, organ differentiation and 
development using TCLs, and consequently have been 

considered the model plants for TCL systems.  
Tobacco (Nicotiana tabacum) is one of the most well 

studied plants, and since the inception of the term and 
concept of a TCL (Tran Thanh Van, 1973), it has become 
the model system on which all other TCL studies are 
based. Four morphogenic programs: direct flower 
formation, direct root formation, direct bud formation, and 
callus without organogenesis, were induced from tobacco 
(Nicotiana tabacum Wisc.38) lTCLs, which were excised 
from floral ramifications (Tran Thanh Van and Trinh, 
1986). This was possible by varying the concentration of 
carbohydrates and PGRs, light conditions and humidity 
(Table 1). A shift from the floral state to the vegetative 
state was possible by the addition of cell wall 
oligosaccharides to the medium, suggesting that 
oligosaccharides released by PGR-treatment of TCLs 
(Tran Thanh Van et al., 1985) or by pH (Cousson et al., 
1989) can act as signaling molecules. All organs and 
callus arose from the subepidermal layer. Other factors 
controlling morphogenesis in TCLs could be carried out 
by controlling light, sugar and oligosaccharide 



  
 
 
 
 
 

 
Table 1. Studies of morphogenesis in model plants (tobacco, lily, chrysanthemum) using TCLs. 

 

Species Program Explant source PGRs* Additives*1 L/D l/tTCL Organs/TCL DT Reference 
 

Nicotiana tabacum Flower Pedicel 1 IBA; 1 K Glucose 30 L lTCL 30-50 12-21 Tran Thanh Van and Trinh, 1986 
 

 

Vegetative bud Pedicel 
 

IBA; 10 K Sucrose 30 L lTCL 
    

 1 500-800 10-12 Ibid. 
 

 Root Pedicel 10 IBA; 0.1 K Sucrose 10 L/D lTCL 10-20 16-18 Ibid. 
 

 Callus Pedicel 3 IBA; 0.1 K Sucrose 30 L lTCL - 8-10 Ibid. 
 

            

Lilium longiflorum Pseudo-bulblet Young leaf 2 BA; 6 NAA Sucrose 30 L tTCL 8 28 Nhut, 1998 
 

 Bulblet/shoot Pseudo-bulblet 1-3 CPPU Sucrose 20-90 L tTCL 15 35 Nhut et al., 2002b 
 

 Bulblet Receptacle/ovary 2 BA; 5 NAA Sucrose 30 L tTCL 41 42 Nhut and Teixeira da Silva, 2001h 
 

 Pseudo-bulblet Stem node 1-2.3 BA Sucrose 20 L tTCL 2 28 Nhut et al., 2001b 
 

 Bulblet Young stem 5.4 NAA Sucrose 20 AC 1 L tTCL   Nhut et al., 2001a; 2001b 
 

 Root Young stem 2.2 2,4-D Sucrose 20 AC 1 L tTCL - 14 Ibid. 
 

 Shoot Young stem 1 IBA Sucrose 20 AC 1 L tTCL   Ibid. 
 

 PLB Young stem 1.1 TDZ Sucrose 20 AC 1 L tTCL   Ibid. 
 

 SE Young stem 5.4 NAA 0.4 TDZ Sucrose 20 AC 1 L tTCL   Nhut et al., 2001d; 2002a 
 

 SE Pseudo-bulblet 1.1 NAA 2.2 TDZ Sucrose 30 L tTCL  42 Nhut et al., 2001a 
 

           

Dendranthema grandiflora SE, shoot Stem internode 1-3 2,4-D 1-3 TDZ Sucrose 20 L/D tTCL 1-3 15-21 Teixeira da Silva and Fukai, 2003 
 

 Root Stem internode 1-3 NAA 1 IBA Sucrose 40 L/D tTCL 2-3 5-8 Ibid. 
 

             

 

* = µM; *1 = g/l; 2,4-D = 2,4-dichlorophenoxyacetic acid; AC = activated charcoal; BA = N
6

-benzyladenine; CPPU = N-(2-chloro-4-pyridyl)-N-phenylurea (forchlofenuron); IBA = indole-3-butyric acid; K = 

Kinetin; NAA = α-naphthalene acetic acid; TDZ = N-phenyl-N′-1,2,3-thidiazol-5-ylurea (thidiazuron). PLB = protocorm like body; SE = somatic embryo. DT = development time (days). 



 
 
 

 

concentration, ionic composition of the culture medium 
and pH (Cousson and Tran Thanh Van, 1992; Tran 
Thanh Van et al., 1985). The flower program can only be 
induced on TCLs excised from floral branches and not 
from the base of the stem (Tran Thanh Van, 1973) . 
There is a more comprehensive review on tobacco tissue 
culture and TCL applications (Nhut et al., 2003a).  

Lilies (Lilium longiflorum) are fast becoming one of the 
most important bulbous crop species globally. The 
traditional asexual propagation of Lilium spp. by bulb 
scales as well as the lack of efficient micropropagation 
systems for species within the Lilium genus prompted 
extensive studies of TCL as a tool and solution for these 
shortcomings (reviewed in Nhut et al., 2001a). Since 
TCLs have been used extensively to study lily 
differentiation, and with the successful manipulation of all 
morphogenic programs (Table 1), it has been considered 
as a model system. In an attempt to test the effect of 
tTCL explant source (receptacle, stem node and 
internode, pseudo-bulblet, leaf) together with different 
factors such as sucrose concentration, explant position, 
activated charcoal (AC) and PGRs on the mass 
propagation of Lilium was studied (Nhut et al., 2001b). 
For all the studies on bulblet formation using TCL 
methods, a MS/2 medium supplemented with 1-2.7 µM α-
naphthalene acetic acid (NAA) or 10 µM indole -3-butyric 
acid (IBA) and sucrose at concentrations from 20-30 g/l 
was used for the rooting of shoots, bulblets and pseudo-
bulblets. Plantlets obtained in the light developed well on 
this medium and were subsequently transferred to the 
greenhouse, with a 90-100% survival rate. When young 
leaf explant tTCLs (0.3 mm) were excised and cultured 
on MS medium supplemented with 3% sucrose and 2 µM 
BA combined with 6 µM NAA (Nhut, 1998), pseudo-
bulblets formed, mainly on the adaxial surface. Shoots 
regenerated from pseudo- bulblet tTCLs using 
forchlofenuron (CPPU), while a maximum of 15 bulblets 
can be obtained from one pseudo-bulblet tTCL. At low 
sucrose concentrations (2-4%) shoots were obtained, but 
at high concentrations (6-9%) bulblets formed (Bui et al., 
1999a; Nhut, 2001c; Nhut et al., 2002b). When receptacle 
tTCLs were used, buds appeared within 3 weeks of 
culture, but not in the ovary or flower stalks (Nhut et al., 
2001a). These buds continued to develop into bulblets. 
Stem node (2-3 mm) tTCL sections from plantlets derived 
from shoot tips of dormant bulbs formed pseudo-bulblets, 
which developed into the flowering stage without 
dormancy being observed (Nhut et al., 2001b). tTCL 
square epidermal layers from young stems could form an 
average of 4 bulblets was formed per tTCL after 4 weeks 
culture (Nhut et al., 2001a). Shoots did not form in 
activated charcoal (AC)-free medium, indicating that AC 
has the same effect as a cytokinin-like hormone on the 
development of tTCL explants. In other studies (Nhut et 
al., 2001d; 2002a), similarly prepared transverse young 
stem sections of L. longiflorum were shown to form 
different organs (bulblets, roots, shoots, plantlets, PLBs, 

 
 
 
 

 

somatic embryos) when explants were exposed to 

different PGRs. Somatic embryogenesis has been 
achieved in tTCLs of in vitro L. longiflorum pseudo-bulblet 

explants (Nhut et al., 2001a). 

TCLs have recently been used to study the effect of 
numerous media additives (carbon source, antibiotics, 
PGRs, inter alia) and conditions on regeneration and 
morphogenesis in chrysanthemum. A more 
comprehensive review on chrysanthemum also highlights 
these studies (Teixeira da Silva, 2003). The controlled 
production of roots, shoots or somatic embryos could be 
achieved when stem internode tTCLs were placed on 
various media (Table 1; Figure 1; Teixeira da Silva and 
Fukai, 2003). 
 
 

APPLIED TCL SYSTEMS 

 

Numerous plants are used as ornamentals for decoration, 

cut flowers, landscaping and gardening. Below are some 

ornamentals which, using conventional micropropagation 

systems have resulted in multiple morphogenic programs, 

but following the use of the TCL system, have resulted in 

individual morphogenic programs. 
 
African violet (Saintpaulia ionantha). Direct bud 

organogenesis (vegetative bud, callus, roots, somatic 
embryo, polyembryonic-like structure) was achieved in 
this commercially important micropropagated ornamental 
perennial when the auxin/cytokinin (NAA:BA or TDZ) ratio 
in the TCL (derived from leaf petioles to the central nerve 
(leaf vein) and lamina) culture medium was strictly 
controlled. An average of 100-200 shoots per tTCL 
explant were obtained from 0.3-0.5 mm petiole or 3x3  
mm lamina sections, respectively, within 4 weeks culture. 

Over 70.000 plants were produced from a single leaf 

within 3-4 months (Ohki, 1994). 
 
Amaranth (Amaranthus edulis ). Amaranthus are 

popular for dry flower production, bedding and indoor 

plants. As a crop, they have a rich lysine content, about 
18% higher than cereals. Shoots and embryo-like 

structures (ELSs) were obtained when 0.2-0.4 mm tTCLs 
excised from apical and subapical zones of Amaranthus 

seedlings formed directly on the epidermal cells of after 

one week on MS with 3 µM TDZ (Bui et al., 1998a). 
 
Begonia (Begonia rex). Over 2000 species of Begonia are 

already classified with more varieties increasing every year 

by traditional breeding methods. The major target of 

breeding is alteration of plant morphology, leaf and/or flower 

colour. Begonia is one of the most popular ornamental 

plants in the world and is used as garden plants, potted 

plants, hanging baskets, and greenhouse flowers. One to six 

epidermal cell layers and subjacent collenchyma cells 

excised from the main vein of leaves were cultured on a 

mineral solution containing 1% sucrose 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Flow diagram indicating the origin of tTCLs, and the induction of a rhizogenic (root), callogenic (callus), caulogenic (shoot) or 

somatic embryogenic programmes. Following the harvest of shoots (the most important organ for chrysanthemum regeneration and 

transformation studies), these may be rooted in vitro on Hyponex-supplemented agar medium, then acclimatized in the greenhouse to 100%, 

then induced to flower under short day conditions. 



 
 
 

 

and 10 g/l agar, to which 1 µM BA was added for bud 

formation, or 0.5 µM NAA for root formation, or 0.1 µM 

NAA for unicellular hair formation. This new 

morphogenetic program, expressed after 6 days of 

culture, represents one of the simplest types of 

differentiation (Chlyah and Tran Thanh Van, 1975). 

 

Gentian (Gentiana spp.). Gentians (Gentiana spp) are 

herbaceous perennial plants with high ornamental value 
use as cut and potted flowers, and in landscaping. 

Gentians, relatively recalcitrant species for shoot 
regeneration, could be mass propagated when 0.3-0.5  
mm tTCLs, excised from floral stalk receptacles, were 

cultured on 50 µM TDZ and 1 µM NAA (Hosokawa et al., 
1996). In TDZ-less medium the percentage of buds per 
tTCL is low. Many buds developed after 2-4 weeks 

directly on the surface of receptacle tTCLs. 

 

Geranium hybrid ( Pelargonium x hortorum). 
Geraniums are popular garden plants used specifically for 
their decorative or scented foliage while the bushy 
flowering geraniums have showy flowers suitable for 
gardens, windowboxes or hanging baskets. Gill et al. 
(1992) showed that in tTCL hypocotyls explants (1x10 
Gladiola (Gladiolus spp.). The genus Gladiolus from the 
family Iridaceae comprises about 180 species, and 
numerous cultivars and hybrids that are of ornamental 
value as cut flowers. For the mass propagation of 
Gladiolus within a short time interval, Gladiolus in vitro 

cormel tTCLs were aseptically cultured from corms on 
medium containing 10 µM BA (Stefaniak, 1994). After one 
month cormels developed on the surface of originally 
cultured cormels, near the axilary buds. In vitro cormel 
tTCL explants (0.3-0.5 mm) were excised and cultured on 
medium containing different concentrations of TDZ (1-10  
mm) of 1-week-old geranium hybrid seedlings, somatic 
embryos could form in response to TDZ or a combination 
of IAA and BA, but the number of embryos was much 
less in the latter than with 1-1.5 µM TDZ. The 
development of somatic embryos was rapid and the 
number of embryos was about 8-fold higher than in the 
culture of whole hypocotyl explants. In tTCLs globular or 
early heart-shaped somatic embryos were formed within 
one week of culture, whereas in the whole hypocotyl 
explants they were visible only after 2 weeks. Hypocotyls 
from a 1-week-old plant can be the source of at least 5 
and as many as 10 tTCLs, each of which can develop 
into about 40-60 embryos, giving a total of 400-600 
embryos per hypocotyl, as compared to approximately 50 
embryos which can form directly from a whole hypocotyl 
of similar size and age. tTCLs of 1-week-old seedlings 
produce a higher number of somatic embryos than those 
obtained from older seedlings, and regenerated somatic 
embryos develop into complete plantlets within 6 to 8 
weeks of culture initiation. 

 
 
 
 

 

µM). After two weeks, direct bud primordia without an 

intermediate callus phase were observed on the surface 

of tTCL explants at an optimal concentration of 1-3 µM 

TDZ. More than 50 buds per tTCL could be recovered 

after 3 weeks culture. 
 
 

Heliconia (Heliconia spp.). Several species in this genus 

are floral crops because of their showy and brightly hued 
terminal inflorescences. Goh et al (1995) used TCLs to 
efficiently direct organogenesis. Stem tTCLs from the 
shoot apex (0.8-1mm) of H. psittacorum L. ‘Choconiana’ 
were cultured in vitro on MS with 80 µM 2,4-D, forming 

callus and PLBs, which developed and grew into plantlets 
after two 6-week subcultures on basal MS. The TCL 
system was used for both mass propagation and 
germplasm conservation of Heliconia species. 
 
Iris ( Iris pallida). Many Irises are ornamental plants such 

as I. hollandica or I. pallida. Furthemore, I. pallida is also  
a source of γ-irone. Thin sections (0.3-0.5 mm) made 
across a mature shoot (comprising 5-6 leaves) and from 
the base toward the apex were cultured. Somatic 
embryogenesis occurred on young leaf base tTCLs (Tran 
Thanh Van and Bui, 1999). Protocols have been 
extensively utilized using thin sections for the plant 
regeneration of Irises (Gozu et al., 1993). 
 
 

Orchids. Orchids are one of the most attractive groups of 
cut flower and ornamental potted plants. Many 
commercial firms use in vitro systems for the rapid mass 
plant propagation of various orchids, although only few 
reports exist in the literature. To mass produce a 
monopodial orchid hybrid Aranda ‘Deborah’ 
Laskshmanan et al. (1995) used 0.6-0.7 mm thick tTCLs 
from a single shoot tip (6-7 mm). After 45 days of culture, 
neoformation of PBLs occurred on the same culture 
medium, 13.6 PBLs per TCL and 2.7 PBLs per shoot tip. 
The addition of 2.75 µM NAA to the same medium further 
increased PLB production (19.2 PBLs per TCL). The 
advantage of the tTCL system is to produce a high 
frequency of shoot regeneration and to reduce the time 
interval required, with potentially more than 80,000 
plantlets produced from a single tTCL in a year as 
compared to the 11,000 plantlets produced by the 
conventional shoot tip method. Among monocot orchid 
species such as Phaleanopsis, young leaf lamina TCL 

explant (4 mm
2
) or floral stalks can be induced to form 

protocorms directly along the wounded edges of the 
lamina and on the surface of the TCL (Tran Thanh Van, 
1974). The use of CPPU (10 µM) with a low sucrose 
concentration (1%) caused the highest percentage of 
explant (95%) shoot growth and rooting in Rhynchostylis 
gigantean (Bui et al., 1999b). 



 
 
 

 

Petunia (Petunia hybrida). Petunia is one of the world’s 
favourite gardening and potting annuals responsible for 
rapid and large economic turnovers. Mulin and Tran 
Thanh Van (1989) showed that in vitro shoots and flowers 
are formed from thin epidermal cells excised from the first 
five internodes of basal flowering branches in Petunia 
hybrida. Explants (1x10 mm²) consisted of 3-6 layers of 
subepidermal and epidermal cells and when placed on 
basal MS with 1 µM each of IAA or Kinetin, vegetative 
buds formed after 2 weeks and developed into vegetative 
shoots in all genotypes tested. In contrast, in vitro floral 

buds were obtained when all stages of flowering (floral 
buds to faded flowers) were present on basal flowering 
branches of the mother plant. Other morphogenic 
programs were observed when medium PGRs were 
modified, such as the substitution of 1 µM Kinetin by 10 
µM BAP, resulting in vegetative bud formation, or when 1 
µM IAA was replaced by 10 µM IBA or when Kinetin was 
used at 0.1 µM instead of 1 µM, root formation was 
obtained. A combination of 100 µM 2,4-D and 0.1 µM 
Kinetin induced callus. 
 
Rose (Rosa spp.). Rose is one of the four major cut 
flower species commercially explored worldwide. lTCLs 
were excised longitudinally from dormant bud floral stalks 
and cultured on a full-or half MS, supplemented with 
0.05-5 mg/l 2,4-D or NAA usually in combination with a 
BAP, Zeatin or Kinetin. Preincubation at a high (100 µM) 
2,4-D concentration increased the frequency of both 
organogenic and embryogenic callus from Rosa hybrida 
‘Baccara’ leaf explants (Hsia and Korban, 1996). Sucrose 
at 2-3% was used as the sole carbon source in most 
cases. However, replacement of sucrose by galactose or 
fructose increased somatic embryogenesis from leaf 
explants of some R. hybrida cultivars. Breaking of bud 
dormancy in roses is important for rapid multiplication of 
roses using grafting. lTCLs cultured on medium with 10 

µM BAP and 3 µM GA3 resulted in more than 7 buds per 

lTCL after 4 weeks culture. 
 

Sunflower (Helianthus annuus). Sunflower is a popular 

ornamental and cut flower, with many cultivars used in 
gardening and landscaping. Different hypocotyl 
Helianthus annuus tTCLs were compared for their 

embryogenic and callogenic capacities: a) 2 cm long 
segments of hypocotyls, b) hypocotyls without epidermis,  
c) monolayer of epidermis, d) subepidermal layer, e) 
epidermis plus parenchyma layers, cultured on medium 
with 1 mg/l NAA, 1 mg/l BA and 20 ml/l coconut water 
(Pélissier, 1990). The epidermal monolayer, the 
subsepidermal layers and the hypocotyls without 
epidermis were not embryogenic. Only the tTCLs 
comprising the epidermis plus parenchyma layer and the 
hypocotyls segments were embryonic. The primary 
somatic embryos that differentiated on Helianthus TCLs 
gave rise to secondary embryos, which developed into 
normal fertile plants. 

  
  

 
 

 

TCL AS A TOOL FOR GENETIC ENGINEERING AND 

CROP IMPROVEMENT 
 
Plant transformation is a core technology in the genetic 
engineering of plants, and is normally composed of three 
processes: 1) the introduction of genes into plant cells; 2) 
selection of transgenic cells and 3) regeneration of 
transgenic plants. However the limiting factor has often 
been the third step. Without successful regeneration, in a 
controlled and defined manner, leading to the formation of 
organs or plants that are genetically and physiologically 
normal, there will be no success of stable transgene 
expression. Often initial explants utilized in the 
regeneration procedure are too large, and the capacity of 
both transformed and untransformed cells (following the 
gene introduction method) to regenerate is the same, 
especially if the selection level is low, or if the 
regenerating shoots arise from the surface of cells not in 
contact with the selection medium, or from within the 
explant, where the selective agent has not had time to 
diffuse through the explant, and exert its selective 
pressure. This results in chimerism and the formation of 
escapes. The utilization of TCLs eliminates the presence 
of untransformed cells and subsequent chimerism, and 
exposes all cells on the thin layer to the selective medium. 
Only cells harbouring the selector gene within their 
genome proliferate on the selective medium. Success of 
transformation varies widely between ornamental species, 
and has been achieved primarily by Agrobacterium-
mediated gene transfer, and to a lesser extent by direct 
gene transfer (particle bombardment, electroporation, 
electrophoresis, silicon fibres, magnetite particles, or 
protoplast manipulation). The reports on the use of a TCL 
system as an initial explant for gene transfer are few, but 
those that exist demonstrate the effectiveness of 
introducing a gene into an explant with defined cellular 
structure and with a controlled regeneration program, 
allowing for the formation of non-chimeric transgenic 
plants.  

Transgenic tobacco plants derived from tTCLs 
transformed with the rolB gene have more pronounced 
rhizogenesis and flowering, and appear to be involved in 
the promotion of meristem formation (Altamura et al., 
1994). The effectiveness of transformation also depends 
on cell competence for both regeneration and 
transformation (Creemers-Molenaar et al., 1994). 
Tobacco ‘Samsun’ lTCLs excised from floral pedicels 
were cultured to induce vegetative buds to study the cell 
competence for regeneration and transformation by 
biolistics (Tran Thanh Van, 1980). Ten days pre-culture 
was the optimal period for obtaining genetic 
transformants.  

Gladiolus tTCLs at pre-mature bud stage (15 days on 

medium with 3 µM TDZ) were transformed using biolistic 
transformation. Thus the preculture period necessary for 
induced cell competent for plant regeneration from TCL 

explants is an important factor for transgenic plant 



 
 
 

 

formation. Moreover TCL explants have an increased 
surface when infected or exposed to Agrobacterium or 

biolistic transformation.  
TCLs have been used as an explant source for the 

study of transformation, with transgenic plants obtained 
for Brassica napus (Charest et al., 1988), Nicotiana 
plumbaginifolia (Trinh et al., 1987), and Digitaria 
sanguinalis (Bui et al., 1998b). In Brassica napus ssp. 
olifera ‘Westar’ tTCLs a high frequency of transformation 
(40-50%) was obtained when tTCLs were Agroinfected 
for 30 s and co-cultivated for 2 days before the addition of 
an antibiotic (Charest et al., 1988). In Nicotiana 
plumbaginifolia tTCLs, transformants were obtained on a 
100 mg/l kanamycin selective medium after co-cultivation 
with A. tumefaciens for 2 days (Trinh et al., 1987). 
Transgenic plants with the bar gene were confirmed by 
Southern analysis, revealing 3 basta-resistant lines when 
Digitaria sanguinalis tTCLs were biolistically transformed 
(Bui et al., 1998b).  

Successful transformation of Dendranthema grandiflora 

was obtained when stem tTCLs or leaf lTCLs were used 
as initial explant sources, using both Agrobacterium-

mediated transformation, and biolistics (Teixeira da Silva 
and Fukai, 2002a; 2002b). 
 
 

CONCLUDING REMARKS 
 

All patterns of morphogenesis displayed by a plant (callus, 
root, shoot, flower, somatic embryo) can be induced either 
separately or in combination, each with a well-defined 
reversible/irreversible phase. Plant tissue culture and 
molecular biotechnology are at an important crossroad 
where one or the other cannot solely be utilized to achieve 
the successful analysis of in vitro or in planta physiological 
and genetic systems. Both have powerful techniques that 
permit the understanding of mechanisms that control 
processes such as transgene expression, in vitro 
flowering and morphogenesis. TCL systems have been 
used extensively as a tool that allows for the 
understanding of these processes, and opens the way for 
new research that may further elucidate certain 
physiological and genetic pathways and processes, which, 
in plant tissue culture and molecular biotechnology, still 
remain a paradigm. The TCL system is a simplified 
system that requires only a small amount of plant material 
and medium volume (circ. 15 µl per TCL), and provides a 
good system for the study of fundamental and applied 
aspects of regeneration and transformation. The TCL 
system has been effectively utilized to study 
organogenesis and embryogenesis in ornamental and 
floricultural species, and promises to be extended to the 
micropropagation of others. 
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