The antimicrobial activity of *Croton membranaceus*, a species used in formulations for measles in Ghana

Marcel T. Bayor\(^1\)*, Stephen Y. Gbedema\(^1\) and Kofi Annan\(^2\)

\(^1\)Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.

\(^2\)Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.

Accepted 3 September, 2013

The antimicrobial activity of the methanolic root extract and compounds isolated from *Croton membranaceus* against the bacteria; *Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli*, *Pseudomonas aeruginosa* and fungi; *Aspergillus niger* and *Candida albicans*, using the agar diffusion and broth dilution techniques was studied in order to establish its possible usefulness in the treatment of measles. The methanolic extract showed a significant (p < 0.01) antibacterial and antifungal activity against the test organisms used with minimum inhibitory concentrations (MICs) ranging from 0.53 - 1.43 mg/ml. Out of the six compounds tested (crotomembranafuran, gomojoside H, julocrotine, -sitosterol, -sitosterol-3-D-glucoside, and DL-threitol), gomojoside H, showed significant antibacterial activity against; *S. aureus*, *B. subtilis* and *P. aeruginosa* (MICs < 10 g/ml). The other compounds exhibited no significant antimicrobial activity (MICs > 200 g/ml). The activities of gomojoside H were found to be similar to the effects of gentamicin on these organisms. The results therefore indicated that this compound is a potent antibacterial and its presence appears to explain in part the antimicrobial activity exhibited by the *C. membranaceus* root extract and supports its usefulness in treating secondary bacterial infection in measles.

**Key words:** *Croton membranaceus*, gomojoside H, antibacterial activity, measles.

**INTRODUCTION**

The root extract of *Croton membranaceus* Mull. Arg. (Euphorbiaceae) is used in formulations for the treatment and management of prostate and related cancers and measles in Ghana (Mshana et al., 2000).

Our earlier investigations revealed significant cytotoxic activity of the extract on human cancer cells (Bayor et al., 2007). We later isolated six compounds from the active ethyl acetate fraction of this extract, including; a new furano-clerodane diterpenoid, crotomembranafuran, in addition to the known glutarimide alkaloid, julocrotine; -sitosterol; -sitosterol-3-D-glucoside; the labdane diterpenoid, gomojoside H and DL-threitol.

Further investigations revealed marked cytotoxic activity of crotomembranafuran, -sitosterol-3-D-glucoside and DL-threitol against human prostate (PC-3) cells (Bayor, 2008).

In looking at the possible usefulness of *C. membranaceus* in the treatment of infections associated with measles, we isolated more of the compounds and investigated the antimicrobial activity of these compounds and the extract on selected microorganisms, for which we now report.

**MATERIALS AND METHODS**

General experimental procedures

\(^{13}\)C (150 MHz) – the spectrometer used was 600 MHz. Electrospray mass spectrometry (ESIMS) was conducted in methanol and DMSO on a Micromass QUATTRO Ultima (with the sample infused through a syringe pump). Electron-impact mass spectra (EIMS) and accurate mass determinations were conducted on a Micromass Autospec M Spectrometer at the Advanced Chemical and...
Materials Analysis Unit, University of Newcastle, Newcastle upon Tyne, U.K.

Plant material

*C. membranaceus* root was collected in October, 2003 at Mampong-Akwapem, Ghana, and authenticated at the Centre for Scientific Research into Plant Medicine (CSRPM), Mampong-Akwapem, Ghana, where a voucher specimen (CSRPM/011/03) has been deposited. The material was dried in the shade and comminuted into suitable particle sized powder for extraction.

Extraction and isolation

Powdered *C. membranaceus* root (500 g) was extracted with methanol (2.5 L) using a Soxhlet extractor and the extract obtained was concentrated to a syrupy mass under reduced pressure before drying completely over silica gel in a vacuum chamber at room temperature, thus producing a dark brown organic extract (15 g). The above was repeated and the combined dried extracts (30 g) were stored in a refrigerator until used further.

The methanolic extract (25 g) was fractionated by column chromatography over silica gel 60 G (50 g, average particle size 5 - 40 µm) (Merck) and sequentially eluted with hexane, ethyl acetate and methanol, which were then concentrated under reduced pressure at 45°C to obtain hexane (2.6 g), ethyl acetate (14.4 g), and methanol (7.8 g) fractions.

Column chromatography of the ethyl acetate fraction, eluting with hexane containing increasing amounts of ethyl acetate yielded eight fractions (F1-F8). Fraction F6 (1.50 g) was re-chromatographed over silica gel eluted with hexane-ethyl acetate (4:1) and a sub-fraction F62 further purified by repetitive chromatography on silica gel with hexane-ethyl acetate (4:2) to afford the new furano-clerodane diterpenoid [12-oxo-15,16-epoxy-3,13(16),14-clerodatrien-17,18-diocacid dimethyl ester] (crotomembranafuran) (51 mg) (Bayor, 2008).

Further column chromatography of the other fractions on silica gel led to the isolation of the other compounds, thus: F7 (2.02 g) - julocrotine (20 mg) (Aboagye et al., 2000), F8 (2.07 g) - ( - sitosterol) (20.3 mg) (Lee et al., 2004; Nguyen et al., 2004) and -sitosterol-3-D-glucoside (40 mg) (Kadowaki et al., 2003), F9 (1.56 g) - gomojoside H (9 mg) (Iwagawa et al., 1992), F10 (1.951 g) and F11 (2.07 g) - DL-threitol (132 mg) (Kitajima et al., 1999) (Figure 1).

Antimicrobial assays

The antimicrobial activities of the *Croton membranaceus* root extract and the compounds; crotomembranafuran, julocrotine, -sitosterol, -sitosterol-3-D-glucoside, gomojoside H and DL-threitol were assessed against; S. aureus (NCTC 10788), B. subtilis (NCTC 10073), E. coli (NCTC 9002), P. aeruginosa (NCTC 10662), A. niger (ATCC 6275) and C. albicans (ATCC 90028); by the standard 96-micro-well dilution technique (Eloff, 1998) and the Kirby-Bauer disk-diffusion method (Jones et al., 2001) using Mueller-Hinton agar. The test organisms were from the stock kept at the Microbiology Section of the Department of Pharmaceutics, KNUST, Kumasi, Ghana. For positive controls; gentamicin (Pharm-Intas, India) (10 g/ml) was used for B. subtilis, P. aeruginosa and S. aureus; ampicillin (Glaxo-SmithKline, UK) (10 g/ml) for E. coli; and ketoconazole (Janssen-Cilag, Belgium) (10 g/ml) for C. albicans and A. niger.
Table 1. Zones of growth inhibition exhibited by Croton membranaceus root extract (Kirby-Bauer agar-diffusion method).

<table>
<thead>
<tr>
<th>Test organism</th>
<th>Concentration of extract (mg/ml)</th>
<th>Zone of inhibition (Mean ± SD (mm))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>S. aureus</td>
<td>3.5 ± 0.3</td>
<td>5.0 ± 0.5</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>2.0 ± 0.5</td>
<td>4.7 ± 0.6</td>
</tr>
<tr>
<td>E. coli</td>
<td>4.0 ± 1.5</td>
<td>7.3 ± 0.2</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>1.0 ± 0.6</td>
<td>2.5 ± 0.3</td>
</tr>
<tr>
<td>A. niger</td>
<td>3.7 ± 1.0</td>
<td>5.0 ± 0.7</td>
</tr>
<tr>
<td>C. albicans</td>
<td>2.5 ± 0.8</td>
<td>4.5 ± 0.6</td>
</tr>
</tbody>
</table>

Results are mean ± SD (n = 6).

Table 2. Inhibition of growth of the organisms exhibited by Croton membranaceus root extracts (broth tube dilution technique).

<table>
<thead>
<tr>
<th>Test organism</th>
<th>Concentration of the extract (mg/ml)</th>
<th>Positive controls</th>
<th>MIC (mg/ml) (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>S. aureus</td>
<td>+++</td>
<td>+++</td>
<td>-----</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>E. coli</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>A. niger</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>C. albicans</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Key: +++ Growth; ----- No growth. Results are mean ± SD (n = 6).

RESULTS AND DISCUSSION

Generally, the extract showed significant (p < 0.01) antibacterial and antifungal activities against the test organisms used with MICs as; S. aureus (0.53 mg/ml), B. subtilis (1.31 mg/ml), E. coli (0.68 mg/ml), P. aeruginosa (1.43 mg/ml), A. niger (0.86 mg/ml) and C. albicans (0.82 mg/ml) [Tables 1 and 2]. The results were consistent with reports of antmiobacterial activity associated with some other species of Croton, such as; Croton urucurana Baill (Peres et al., 1997, Gurgel et al., 2005), Croton zambesicus (Abo et al., 1999), Croton Cajucara Benth (Alviano et al., 2005) and Croton sonderianus (McChesney et al., 1991).

Out of the six compounds tested, gomojoside H showed significant (p < 0.01) antimicrobial activity against; S. aureus, B. subtilis and P. aeruginosa giving minimum inhibitory concentrations (MICs) as; 7.52 g/ml, 9.28 g/ml and 9.81 g/ml respectively. The rest [croton-embranafuran, julocrotine, -sitosterol, -sitosterol-3-D-glucoside and DL-threitol] had no significant antimicrobial activity with MICs above 200 g/ml (Table 3). The activities of gomojoside H were similar to the effects of gentamicin on these organisms. Although gomojoside H had earlier been obtained from Viburnum suspensum (Caprifoliaceae) (Iwagawa et al., 1992), this is the first report of its antimicrobial activity.

Unfortunately, julocrotine which is a glutarimide alkaloid did not show significant antimicrobial activity, though several glutarimide antibiotics including streptimidone and its synthetic analogues have been widely reported (Akhrem et al., 1979; Becker and Rickards, 1982; Buravskaya and Lakhvich, 1996; Buravskaya and Lakhvich, 1998; Kim et al., 1999; Kondo et al., 2000).

The lack of antimicrobial activity shown by -sitosterol in these investigations were also consistent with reports of no antimicrobial activity associated with -sitosterol, obtained from several plant sources (Chandramu et al., 2003; Hess et al., 1995; Cota et al., 2003) including C. urucurana Baillon (Peres et al., 1997).

Interestingly however, there are numerous reports of -sitosterol together with its 3-D glucopyranoside found in plants, whose extracts have shown significant antimicrobial activity (Ramesh et al., 2004; Venkatesan et al., 2005) including some species of Croton (Abo et al., 1999). There are also reports of improved outcome with the use of -sitosterol and its glucoside as adjuvants in the treatment of pulmonary tuberculosis (Donald et al., 1997).

The results therefore showed that, gomojoside H has considerable antibacterial activity especially, against S. aureus, B. subtilis and P. aeruginosa, and its presence could explain, at least in part, the antimicrobial activity exhibited by the C. membranaceus root extract, and
Table 3. Zones of growth inhibition [Mean ± SD, mm] exhibited by the test compounds (Kirby - Bauer disk - diffusion method).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (g/ml)</th>
<th>Sa</th>
<th>Bs</th>
<th>Ec</th>
<th>Pa</th>
<th>An</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>10</td>
<td>25.1±0.7</td>
<td>24.4±0.5</td>
<td>24.6±0.9</td>
<td>26.0±0.7</td>
<td>18.3±0.2</td>
<td>29.1±0.3</td>
</tr>
<tr>
<td>Crotomembra-nafuran</td>
<td>200</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Julocrotine</td>
<td>200</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>-sitosterol</td>
<td>200</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>-sitosterol-3-D-glucoside</td>
<td>200</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>DL-threitol</td>
<td>200</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Gomojoside H</td>
<td>20</td>
<td>5.2±0.3</td>
<td>4.0±0.5</td>
<td>3.5±0.6</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>9.5±0.5</td>
<td>8.3±0.9</td>
<td>7.4±1.0</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>12.2±1.5</td>
<td>10.6±1.0</td>
<td>11.0±0.8</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>16.8±1.1</td>
<td>15.5±1.4</td>
<td>14.2±1.3</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>18.0±0.8</td>
<td>17.4±1.8</td>
<td>14.2±1.5</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>MIC (g/ml)</td>
<td>7.52</td>
<td>9.28</td>
<td>9.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: PC - positive control; Sa - S. aureus; Bs - B. subtilis; Ec - E. coli; Pa - P. aeruginosa; An - A. niger; Ca - C. albicans. Results are mean ± SD (n = 6).

supports its usefulness in treating secondary bacterial infections associated with measles.

AKNOWLEDGEMENT

The authors wish to thank the staff of the Spectroscopy Unit of the University of Newcastle, Newcastle upon Tyne for generating the spectroscopic data on the compounds.

REFERENCES


