Full Length Research Paper

Antimicrobial and cytotoxicity activities of extract from *Pseudospondias microcarpa* (Anarcadiaceae)

Sidjui Sidjui, Lazare, 1, 2 Melong, Raduis 3, Nnanga, Nga 1, Toghue Kouipou, Rufin Marie 4, Zeuko’o Menkem, Elisabeth 4, Sikadeu, Sandrine 5, Guedje, Nicole Marie 6, and Folefoc Ngosong, Gabriel 2

1 Institute of Medical Research and Medicinal Plants Studies P.O Box 616 Yaoundé, Cameroon
2 Laboratory of Phytochemistry and Organic Synthesis, Department of organic Chemistry, Faculty of Science, University of Yaoundé I, P.O Box 812, Yaoundé, Cameroon
3 Laboratory of Natural Products, Department of Chemistry, University of Yaoundé I, P.O Box 47, Yaoundé, Cameroon
4 Laboratory for Phytobiochemistry and Medicinal plants Studies, Antimicrobial Agents Unit, Faculty of Science, University of Yaoundé I, P. O Box 812, Yaoundé, Cameroon
5 Department of Pharmacy, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O Box: 2701 Douala, Cameroon
6 Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P. O Box 47, Yaoundé, Cameroon

Accepted 1st September, 2014.

This study was conducted to evaluate the antimicrobial and cytotoxicity activities of extracts from root and stem barks of *Pseudospondias microcarpa*. The root and stem barks were extracted successively by *n*-Hexane, Methylene chloride, ethyl acetate, Methanol, Methanol-Methylene Chloride, and ethanol-water. The antimicrobial activity was evaluated by disc diffusion method against *Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli*, *Candida albicans*, *Streptomyces viridochromogenes* Tü 57 and *Mucormiehei*. Cytotoxicity activity of extracts was measured by Brine shrimp lethality bioassay and their phytochemical screening was studied. The inhibition zone diameter of the nineteen extracts ranged from 0-15 mm. PMF4 and PMF7 with 15 mm showed moderate activity on *Staphylococcus aureus*. PM11 and PMF6 showed 14 mm on *Bacillus subtilis*, *Escherichia coli* and *Candida albicans* respectively. At 24 h, the percentage of lethality vary from 0-21 % with PMF2 and PM3 having 19 and 21 % respectively. At 32 h, percentage varies from 0-56 % with PMF1, PMF2 and PM3 exhibited 27, 38 and 56 % respectively. Phytochemical screening revealed the presence of sterols, alkaloids, flavonoids, cardiac glycosides, saponins, quinones, glycosides, polyphenols, triterpenes, anthocyanins, antraquinons, tannins and coumarins. This work revealed the antimicrobial potentials of this plant supporting their traditional use.

Key Words: *Pseudospondias microcarpa*, Anacardiaceae, antimicrobial, Brine shrimp, phytochemical screening.

INTRODUCTION

The need for new, effective and affordable drugs to treat microbial diseases in the developing world is one of the issues facing global health today (Awouafack et al., 2013). In fact, the discovery of antibiotics has decreased the spread and severity of a wide variety of diseases. However, the result of their uncontrolled use, the efficiency of many antibiotics is being threatened by the emergence of microbial resistance to existing chemotherapeutic agents (Cowan, 1999). Bacteria and fungi are evolving numerous mechanisms to evade antimicrobial agents and the resistance to old and new antibiotics is increasing (Pareke and Chanda, 2007). The developments of multidrug-resistant (MDR) bacterial strains (Alanis, 2005) have made the search for new and novel antimicrobial substances among the first priorities.
within the quest for such materials. In addition the lack of new antifungal agents and the long-term use of antifungal
Drugs in the treatment of chronic fungal infections have
caused the emergence of amphotericin-B and azole
resistant *Candida* species (Ficker et al., 2005). Due to
these reasons, there is a pressing need to identify new
and novel antimicrobial agents that would help in
alleviating the problems of emerging resistant bacterial
and fungal pathogens.

Besides small molecules from medicinal chemistry,
natural products are still major sources of innovative
therapeutic agents for various conditions including
infectious diseases (Clardy and Walsh, 2004). Current
research on natural products primarily focuses on plants
since they can be sourced more easily and selected on
the basis of their ethno-medicinal uses (Verpoorte et al.,
2005). Traditional medicine continues to provide health
coverage for over 80% of the world population, especially
in the developing world (WHO, 2002). *Pseudopsondias*
microcarpa is extensively used in herbal medicine in
Centre, East, South and Littoral regions of Cameroon in
the treatment of various diseases like: Hyperglycemia,
gonococci, anemia, diarrhea, filaria, anguillulose,
rheumatisms, ankylostomiasis, ascariidose, cestodose,
malaria, typhoid fever, haemorrhoid, oedemas,
rheumatisms, stomach ache, icterus, pediculoses,
diabetes, trypanosomiasis, leishmaniasis and
elephantiasis (Chenu, 1992; Tanda, 1995; Tchoumi,1995;
Noumi and Yomi, 2001; Mbota, 1999; FAO, 2001).
Previous phytochemical and biological investigations
showed that the aqueous and methanol-methylene
chloride extracts possessed antioxidant activity (Yondo et
al., 2009). Petrol ether extract of leaves showed
moderate antibacterial activity on *E. coli* and was found to
contain phenolic compounds, tannins and sterols
(Kisangau et al., 2007). Ethanolic and dichloromethane
extracts of leaves showed moderate antiplasmodial
activity (Mbatchesi et al., 2006). The present study aimed at
evaluating the potential of *Pseudopsondias microcarpa* of
root bark and stem bark extracts against some Gram-
positive, Gram-negative strains of bacteria and fungi, and
also their cytotoxicity.

MATERIAL AND METHODS

Plant material

The Stem and Roots barks of *P. microcarpa* were
collected in Yaoundé (February 2012) and identified at
the Cameroon National Herbarium (HNC) where voucher
specimens (41437/HNC) are deposited.

Extraction procedure

The air-dried and powdered root bark (500 g) and stem
bark (500 g) of *P. microcarpa* were exhaustively
macerated successively with *n*-Hexane (*n*-Hex, 3 L),
Methylene chloride (DCM 3 L), ethyl acetate (AcOEt, 3 L),
Methanol (MeOH, 2 L), Methanol-Methylene Chloride (1:1
v/v) (MeOH-DCM, 2 L), and ethanol-water (7:3, v/v)
(EtOH-H2O, 3 L) respectively at room temperature for 72 h.
The macerate was filtered and evaporated under
reduced pressure to obtain crude extracts labelled PM8
(10 g); PM9 (7 g), PM10 (40 g), PM6 (33 g), PM7 (35 g),
PM12 (70 g) and PM3 (12 g); PM4 (9 g), PM5 (15 g),
PM1 (23 g), PM2 (37 g) and PM11 (70 g) respectively.

Part of PM11 (60 g) was solubilized successively with
n-Hex, *n*-Hex-AcOEt, (3:1 v/v), *n*-Hex-AcOEt, (1:1 v/v),
AcOEt-MeOH, (3:1 v/v), AcOEt, and MeOH followed by
filtration to give four main fractions labelled PMF1 (5 g),
PMF2 (17 g), PMF3 (4 g), PMF4 (10 g), PMF5 (3 g) and
PMF6 (11 g) respectively. The residual was solubilized
with water and extract with AcOEt to give PMF7 (2 g).

Phytochemical Screening

The identification of alkaloids, tannin, saponins,
flavonoids, glycosids, steroids, triterpenes, anthraquinone,
phenols, cardiac glycosids, quinones, anthocyanins,
sterols, triterpens, anthraquinone, comarrins and polyphenols present in the different plant
extracts were carried out according to the method of
Trease and Evans (2002).

Antimicrobial Assays

Microorganisms

The microorganisms *Staphylococcus aureus*, *Bacillus
subtilis*, *Escherichia coli*, *Candida albicans*, *Streptomyces
viridochromogenes Tü 57* and *Mucormiehei* were used in
this study. *S. aureus* was cultured on pepton medium, *B.
subtilis* and *E. coli* in meat extract medium and *M. miehei*
and *Str. viridochromogenes* in YMG medium for 12 hours.

Inoculum Preparation

The bacterial strains *Staphylococcus aureus*, *Bacillus
subtilis*, *Escherichia coli* and *Streptomyces
viridochromogenes Tü 57* and the fungus strains *Candida
albicans* and *Mucormiehei* were recultivated from fluid
nitrogen deposit on agar plates at 37 °C for 12 hours. A
loop of each microbial species was removed from the
surface of the agar plate and inserted into a test tube half
filled with the respective fluid test strain medium and
incubated on a round shaker at 37 °C and 180 rounds per
minute for 24 hours.

Stock solutions and disc preparation

The different stock solutions of extracts were prepared by
In vitro antimicrobial activity was assessed by Disc diffusion assay

Table 1. Inhibition Zone Diameters (mm).

<table>
<thead>
<tr>
<th>sample</th>
<th>SA</th>
<th>CA</th>
<th>SV</th>
<th>MM</th>
<th>BS</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMF2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMF6</td>
<td>11</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>PMF4</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>PM7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMF5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMF7</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>PM11</td>
<td>13</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>PM9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMF3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>PM10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMF1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ciprofluxacin</td>
<td>18</td>
<td>/</td>
<td>12</td>
<td>/</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>Nystatin</td>
<td>/</td>
<td>14</td>
<td>/</td>
<td>19</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>DCM / MeOH 1:1</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>DMSO</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

SA: *Staphylococcus aureus*; CA: *Candida albicans*; SV: *Streptomyces viridochromogenes*; MM: *Mucormiehei*; BS: *Bacillus subtilis*; EC: *Escherichia coli*; PM8: n-

Weighing 10 mg of different extracts and dissolved in 1 ml DCM/MeOH 1:1 and DMSO 10% respectively for a final concentration of 10 mg/ml. Nystatin and Ciprofluxacin were prepared in the same conditions. 50 µL of each solution was dropped onto sterilized 9 mm diameter paper disks for a final 500 µg / paper disc.

Antimicrobial activity by Discs diffusion assay

In vitro antimicrobial activity was assessed by Disc diffusion method using Mueller Hinton Agar (MHA) obtained from Mast Group Ltd. The MHA plates were prepared by pouring 15 mL of molten media into sterile petriplates (90 mm). The plates were allowed to solidify for 5 min and suspensions of test strains diluted 1:4 with the respective fluid test strain. The different loaded discs were placed on the surface of medium and the extracts and compounds were allowed to diffuse for 5 min and the plates were incubated at 37 °C for 13 hours. Negative control was prepared using respective solvent (DCM/MeOH 1:1/10% DMSO). Nystatin and Ciprofluxacin were used as positive control. Distinct zone of inhibition were measured with Vernier Calliper and expressed in millimeter (mm). These studies were performed in triplicate (Bauer and Kirby, 1966). The activities of extracts with inhibition zone diameter were classified as follows: 10.5 - 12 mm low activity; 13 – 17 mm moderate activity and > 17 mm high activity.

Cytotoxicity activity by Brine shrimp lethality bioassay

Lethality % of brine shrimps at 100 µg / mL

Brine shrimp lethality bioassay (Meyer et al., 1982) technique was applied for the determination of general toxic property of the root bark and stem bark extracts of *Pseudospondias microcarpa*. Anhydrous *Artemia salina* eggs were suspended in artificial seawater in a 1 L separation funnel by constant aeration and kept under light until hatching depending on the room temperature between one to three days. The aeration was intermitted, unhatched eggs removed from the bottom of the flask and a spot light placed towards one side of the flask to gather brine shrimps which were attracted through chemotaxis. After 2 days of hatching period the eggs were ready for the experiment. More than 20 brine shrimps within 990 µL of artificial seawater were transferred to each well of a 24 - well tissue culture plate. Brine shrimps are observed under the microscope to record dead exemplars. For crude extracts, concentrations of 10 mg / mL in DMSO were prepared, and 10 µL of each sample was dropped into a well containing the seawater. Tests were carried out in triplicate. After 24 and 32 hours, the number of dead brine shrimps was recorded for each well. Plates were kept overnight in the refrigerator to immobilize the brine shrimps for determination of total numbers per well. Lethality in per cent was determined by the formula

\[L = \frac{A - N}{B} \times 100 \]

where, \(L \) = Lethality % of brine shrimp; \(A \) = number of dead brine shrimp; \(N \) = number of dead brine shrimp before the crude extract was added; \(B \) = number of dead brine shrimps in the negative controls (up to 2 % is acceptable), \(Z \) = total number of brine shrimps per well, and finally the mean percentage of lethality was calculated.
Table 2. Cytotoxicity assay with *Artemia salina* (%).

<table>
<thead>
<tr>
<th>Sample</th>
<th>100 µg/mL</th>
<th>24 h</th>
<th>100 µg/mL</th>
<th>32 h</th>
<th>LC_{50} 24 h</th>
<th>LC_{50} 32 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM3</td>
<td>21.00</td>
<td>38.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PMF2</td>
<td>19.00</td>
<td>56.00</td>
<td>> 100 µg/mL</td>
<td>/</td>
<td>95 µg/mL</td>
<td>/</td>
</tr>
<tr>
<td>PMF6</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PMF4</td>
<td>0.00</td>
<td>3.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM7</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM12</td>
<td>4.00</td>
<td>4.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM2</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PMF5</td>
<td>4.00</td>
<td>5.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PMF7</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM11</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM9</td>
<td>3.00</td>
<td>3.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM4</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PMF3</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM6</td>
<td>0.00</td>
<td>2.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM10</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM1</td>
<td>2.00</td>
<td>4.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM8</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM5</td>
<td>0.00</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PMF1</td>
<td>5.00</td>
<td>27.00</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Actinomycine D / / < 3.12 no activity
DMSO / / no activity no activity

Determinations of LC_{50} values

The crude extracts were diluted serially in DMSO, and for each concentration prepared 10 µL was dropped into wells containing 990 µL of artificial seawater containing more than 20 brine shrimps, with concentrations of 100, 50, 25, 12.5, 6.25, and 3.12 µg/mL. Lines were prepared in triplicate. After incubation for 24 and 32 hours, the mean percentage lethality for each sample concentration of each crude extract was plotted against the logarithm of concentrations. The LD_{50} concentration, at which 50 % of the brine shrimps died, was determined from the graph. The highly cytotoxic Actinomycine D and DMSO were used for positive and negative control respectively.

RESULTS

Antimicrobial activity

The inhibition zone diameter ranged from 0-15 mm as shown in table 1. Six extracts (PMF6, PMF4, PMF7, PM11, PM5, and PM6) out of nineteen exhibited inhibition diameters on five strains (*Staphylococcus aureus, Candida albicans, Mucormiehei, Bacillus subtilis and Escherichia coli*). Five extracts (PMF7, PM11, PM6, PMF4, PM6) portrayed inhibition zone diameters ranging from 11-15 mm on *Bacillus subtilis*, four extracts (PMF4, PMF7, PM11, PM6) on *Staphylococcus aureus* with inhibition zone diameters varying between 11-15 mm, two extracts PMF6, PM11 and three PM11, PMF7, PMF6 with inhibition diameters 11-14 mm on *Candida albicans and Escherichia coli* respectively and extract PM5 with diameters of 11 mm on *Mucormiehei*. PMF4 and PMF7 with 15 mm of inhibition diameter showed moderate activity on *Staphylococcus aureus*. PM11 showed with 14 mm on *Bacillus subtilis and Escherichia coli*. PMF6 exhibited inhibition with 11 and 14 mm on *Staphylococcus aureus* and *Candida albicans* respectively. Extract PM11 show a broad activity on four microorganisms (*Staphylococcus aureus, Candida albicans, Bacillus subtilis and Escherichia coli*) followed by PMF7 and PMF6 on three microorganisms. In general, extracts and fractions from stem bark and PM11 are more potent than from root bark. No extract exhibited activity on *Streptomyces viridochromogenes* and many extracts showed no activity on all the tested microorganisms. *Bacillus subtilis* is the most sensitive strain followed by PMF7 and PMF6 on three microorganisms. In general, extracts and fractions from stem bark and PM11 are more potent than from root bark. No extract exhibited activity on *Streptomyces viridochromogenes* and many extracts showed no activity on all the tested microorganisms. *Streptomyces viridochromogenes* and the least sensitive being *Streptomyces viridochromogenes*.

Brine shrimp lethality

The percentage of lethality is shown in table 2. At 24 h, the percentage of lethality vary from 0-21 % with PMF2 and PM3 having 19 and 21 % respectively. Extracts PMF5, PM1 and PMF1 showed very less percentage of lethality at 4, 2 and 5 respectively. Out of nineteen extracts, twelve (PMF6, PMF4, PM7, PM2, PMF7, PM11, PM4, PMF3, PM6, PM10, PM8 and PM5) did not inhibit the growth of *Artemia salina* eggs. At 32 h, percentage varies from 0-56 % with PMF1, PMF2 and PM3 exhibited 27, 38 and 56 % respectively. PM6, PMF4, PM1, PMF5 exhibit less cytotoxicity with 2, 3, 4 and 5 % respectively. After 32 hours, PM3, PMF2, PMF4, PMF5, PM6, PM1 and PMF1 showed an increment of their cytotoxicity on brine shrimp. The number of dead cells increases with extracts PMF1, PMF2 and PM3, at 5.4, 2.94 and 1.80 times respectively. This variation of cytotoxicity of extracts show...
that their effect on cells is time dependent. PM12 and PM9 did not present any variation in their cytotoxicity after 32 hours meaning that cytotoxicity effect is not time dependent.

The LC50 of many extracts were not determined but that of PMF2 was > 100 µg/mL and 95 µg/mL at 24 and 32 h. This result is in accordance with the result of the first experiment that present the cytotoxicity of PMF2 as time dependent.

Phytochemical screening

Phytochemical screening revealed the presence of sterols, alkaloids, flavonoids, cardiac glycoside, saponins, quinones, glycosides, polyphenols, triterpenes, anthocyanins, anthraquinons, tannins and coumarins while lipids were absent table 3.

DISCUSSION

These secondary metabolites obtained exert antimicrobial activity through different mechanisms. Tannins exert its antimicrobial activity by binding with proteins and adhesins, inhibiting enzymes, complexation with the cell wall and metal ions, or disruption of the plasmatic membrane (Cowan, 1999). Moreover, alkaloids have been widely studied for their potential use in the elimination and reduction of human cancer cell lines (Nobori, 1994) and interfere with cell division. Saponins have ability to cause leakage of proteins and certain enzymes from the cell (Okwu, 2001). The sensitivity of steroids and the membrane lipids indicate their specific association that causes leakage from liposomes (Majorie, 1999). Flavonoids have the ability to complex with proteins and bacterial cells forming irreversible complexes mainly with nucleophilic amino acids. This complex often leads to inactivation of the protein and loss of its function (Burkill, 1988; Shimada, 2006). Cardiac glycosides are cardioactive compounds belonging to triterpenoids class of compounds. Their inherent activity resides in the aglycone portions of their sugar attachment (Brian et al., 1985). They exert their hypotensive effect by inhibiting Na+ - K+ ATPase. Hence, the presence of these compounds in *Pseudospondias microcarpa* corroborates the antimicrobial activities observed confirming their antimicrobial and cytotoxic properties. The antimicrobial effects of *Pseudospondias microcarpa* extracts against *Staphylococcus aureus*, *Candida albicans*, *Mucormiehei*, *Bacillus subtilis* and *Escherichia coli* suggest that they may possess remarkable therapeutic action in the treatment of gastrointestinal infection and diarrhoea in man, skin diseases and fungal infections (Rogger et al., 1990). Perekh and Chanda (2007) reported that tannins are known to react with proteins to provide the typical tannin effect which is important for the treatment of *Streptomyces viridochromogenes* which implies that they could not be used for crop protection. The high potency of *Pseudospondias microcarpa* against these bacteria gives scientific basis for its use in folk medicine in the treatment of abscesses, bilious conditions, cough, dysuria, diarrhoea and candidiasis scurvy (Morton, 1987; Quiroga et al., 2001).

Successive isolation of active compounds from plants depends upon the plant part and type of solvent used in extraction procedure (Parekh and Chanda, 2007). Our results showed that the activity is mainly concentrated in the fractions from ethanol-water extracts of stem bark, indicating that the potential antimicrobial compounds were in the high polarity fractions. Buwa and Staden, (2006) reported that the aqueous extracts were more active against bacteria compared to the ethanol and ethyl acetate extracts. Ethanol-water and water are usually the main solvent used by traditional healers to prepare plant extracts. The fractions derived from ethanol-water extracts produced more consistent antimicrobial activity. These finding support the use of this solvent to prepare extract in traditional medicine to cure infectious diseases. The above bioactivity results serve as a good tool to direct further chemical work towards those extracts with a potential to deliver molecules of medical interest, in a time

Table 3. Preliminary phytochemical study of plants extracts and fraction.

<table>
<thead>
<tr>
<th>Part of plants</th>
<th>Extracts/fractions</th>
<th>A</th>
<th>S</th>
<th>F</th>
<th>T</th>
<th>Q</th>
<th>AQ</th>
<th>GC</th>
<th>P</th>
<th>TT</th>
<th>ST</th>
<th>AT</th>
<th>G</th>
<th>L</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOH</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Roots bark</td>
<td>EtOH-H2O</td>
<td>+</td>
</tr>
<tr>
<td>EtOH-H2O</td>
<td>+ + + + + + + + + +</td>
<td>+</td>
</tr>
<tr>
<td>MeOH</td>
<td>springfox</td>
<td>+</td>
</tr>
<tr>
<td>AcOEt</td>
<td>+ + + + + + + + + +</td>
<td>+</td>
</tr>
</tbody>
</table>

A: alkaloids; S: saponins; F: flavonoids; T: tannins; Q: quinones; AQ: anthraquinons; GC: cardiac glycosides; P: polyphenols; TT: triterpenes; ST: sterols; AT: anthocyanans; G: glycosides; L: lipids; C: coumarines. MeOH: methanol; EtOH-H2O: ethanol-eau; AcOEt: ethyl acetate +: present; -: absent.
effective way.

Brine shrimp lethality is indicative of cytotoxicity, antibacterial activities, pesticidal effects and exert a wide range of pharmacological effects (McLaughlin et al., 1991). The brine shrimp cytotoxicity assay is also considered as a convenient probe for preliminary assessment of toxicity, detection of fungal toxins, heavy metals, pesticides and cytotoxicity testing of dental materials (Meyer et al., 1982). It can also be extrapolated for cell-line toxicity and antitumor activity (Selvin and Lipton, 2004). It has been observed that LD₅₀ values for general cytotoxicity are about one-tenth LD₅₀ values in the brine shrimp test (McLaughlin et al., 1991). The LD₅₀ value of the extract was 95 µg/mL after 32 hours, which indicates that the extract have high pharmacologic actions (Gupta et al., 1996). The presence of saponins, alkaloids and cardiac glycosides may be responsible for the observed brine shrimps lethality activities of the extracts.

Lethality of brine shrimps was determined after 24 hours according to the standard procedure, and in addition after 32 hours to record besides acute cytotoxicity as well chronic toxicity indicated by continued dying of brine shrimps after 24 hours. To check the false positive effect due to lack of food or for other reasons, negative controls were carefully observed to verify that none of the brine shrimps were dead after 32 hours of incubation. The degree of lethality was directly proportional to the concentration of the extract with LC₅₀ of PMF2 being > 100 µg/mL and 95 µg/mL at 24 and 32 h respectively. Other crude extracts (PMF6, PMF4, PM8), however, showed no significant differences in percentage mortalities between different concentrations within the same plant species indicating no brine shrimp lethality compared to that of control. This significant lethality of several plant extracts to brine shrimp is an indicative of the presence of potent cytotoxic components which warrants further investigation.

CONCLUSION

This work has revealed further potentials of this plant in the area of pharmacology as anticancer and antimicrobial agent supporting the traditional uses of *Pseudospondias microcarpa* in the treatment of various infections. Further studies are required in order to isolate and identify potent bioactive compounds.

LIST OF ABBREVIATIONS

PM8: n-Hex extract from root bark, PM9: DMC extract from root bark, PM10: AcOEt extract from root bark, PM6: MeOH extract from root bark, PM7: MeOH-DCM (1:1) extract from root bark, PM12: EtOH-H₂O (7:3) (v/v) extract from root bark; PM3: n-Hex extract from stem bark, PM4: DMC extract from stem bark, PM5: AcOEt extract from stem bark, PM1: MeOH extract from stem bark, PM2: MeOH-DCM extract from stem bark, PM11: EtOH-H₂O (7:3) (v/v) extract from stem bark; PMF1: n-Hex fraction from EtOH-H₂O extract of stem bark, PMF2: n-Hex-AcOEt (3:1) fraction, PMF3: n-Hex-AcOEt (1:1) fraction from EtOH-H₂O (7:3) (v/v) extract of stem bark, PMF4: n-AcOEt (3:1) fraction from EtOH-H₂O (7:3) (v/v) extract of stem bark, PMF5: AcOEt-MeOH (3:1) fraction from EtOH-H₂O (7:3) (v/v) extract of stem bark, PMF6: MeOH (3:1) fraction from EtOH-H₂O (7:3) (v/v) extract of stem bark, PMF7: AcOEt (aq) fraction from EtOH-H₂O (7:3) (v/v) extract of stem bark.

Hex extract from root bark, PM9: DMC extract from root bark, PM10: AcOEt extract from root bark, PM6: MeOH extract from root bark, PM7: MeOH-DCM (1:1) extract from root bark, PM12: EtOH-H₂O (7:3) (v/v) extract from root bark; PM3: n-Hex extract from stem bark, PM4: DMC extract from stem bark, PM5: AcOEt extract from stem bark, PM1: MeOH extract from stem bark, PM2: MeOH-DCM extract from stem bark, PM11: EtOH-H₂O (7:3) (v/v) extract from stem bark; PMF1: n-Hex fraction from EtOH-H₂O extract of stem bark, PMF2: n-Hex-AcOEt (3:1) fraction, PMF3: n-Hex-AcOEt (1:1) fraction from EtOH-H₂O (7:3) (v/v) extract of stem bark, PMF4: n-AcOEt (3:1) fraction from EtOH-H₂O (7:3) (v/v) extract of stem bark, PMF5: AcOEt-MeOH (3:1) fraction from EtOH-H₂O (7:3) (v/v) extract of stem bark, PMF6: MeOH (3:1) fraction from EtOH-H₂O extract of stem bark, PMF7: AcOEt (aq) fraction from EtOH-H₂O (7:3) (v/v) extract of stem bark.

ACKNOWLEDGEMENTS

The authors thank the Cameroon National Herbarium for...
collection and identification of *Pseudospondias microcarpa* samples.

REFERENCES

Mbita MHJC (1999). Contribution à l’étude des plantes médicinales du Cameroun: le cas des plantes utilisées en médecine traditionnelle pour le traitement des maladies parasitaires. Thèse doctorat 3e cycle, Université de Yaoundé I

Tchoumi NF (1995). Traitement des filarioses et des dar-
tres avec quelques plantes récoltées au Cameroun. Mémoire D.I.P.E.S.II, E.N.S., Université de Yaoundé I