Full Length Research Paper

Influence of spacing and organics on plant nutrient uptake of black nightshade (*Solanum nigrum*)

Sivakumar V.¹* and Ponnusami V.²

¹Agricultural research Station, Tamil Nadu Agricultural University, Bhavanisagar – 638451, Erode District, Tamil Nadu, India.
²Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam - 625 604, Theni District, Tamil Nadu, India.

Accepted 29 of November, 2013

Investigations were carried out at the Horticultural College and Research Institute to study the effect of spacing and bio-stimulants on the plant nutrient uptake of *Solanum nigrum*. The experiments were laid out in split plot design with three replications. The treatments consisted of four levels of spacing (M₁ – 30 cm, M₂ – 45 cm, M₃ – 60 cm and M₄ – 60 × 45 cm) and nine bio-stimulants/organics (S₁ – Recommended dose of fertilizer (RDF), S₂ – control, S₃ – panchagavya 2%, S₄ – panchagavya 3%, S₅ – moringa leaf extract 2%, S₆ – moringa leaf extract 4%, S₇ – humic acid, S₈ – cytozyme 1% and S₉ – vermicompost). Observations on nutrient uptake found that, the treatment closer spacing + RDF (M₁S₁) registered higher nitrogen uptake (223.83 kg ha⁻¹) and phosphorous uptake (22.02 kg ha⁻¹) followed by closer spacing + panchagavya 3% spray (M₁S₄) (202.64 kg ha⁻¹). Regarding the potassium uptake the treatment wider spacing + RDF (M₄S₁) combination recorded the highest K uptake (252.83 kg ha⁻¹) followed by the treatment wider spacing + humic acid combination (M₄S₇) (227.14 kg ha⁻¹).

Key words: *Solanum nigrum*, spacing, organics, plant nutrient uptake.

INTRODUCTION

Among various medicinal plant species, black nightshade, or (*Solanum nigrum* L. Mana thakkali, Family Solanaceae) has great demand in the Indian system of medicine. This herb is recently gaining importance in pharmaceutical industry due to its amazing drug potential. The whole plant is recommended for use as cardiac tonic, alterative, diuretic, sedative, expectorant, diaphoretic, cathartic and anodyne. The active principle in this herb is solasodine; a glucosidal alkaloid, used as a starting material for the synthesis of hydrocortisones. It is in great demand in the pharmaceutical industry (Dhawan, 1986). Fertilizers and organic manures constitute im-portant inputs in the production of all crop species. Plants require essential mineral nutrients to complete their life cycle and the quantities required for optimum growth and production vary with species. Increased fertilizers for the development of more efficient fertility management program. Organic formulations are chemical fertilizer cost and awareness of environmental pollution have necessitated the use of organic sources of apparently environment and farmer friendly renewable source of non-bulky, low cost organic agricultural inputs for improving soil quality status in consumable medicinal plants. Organic manures are fairly good source of nutrients which has direct influence on plant growth like other commercial fertilizers. Mukherjee et al. (1991) and Prasad and Singhand (1989) also reported that application of organic manures increased the leaf nutrient status. Jambhekar (1992) and Shivputra et al. (2004) also reported similar result. However, little information is available in this area; therefore this study was designed and conducted to identify the effect of spacing and organics on plant nutrient uptake of black nightshade.

MATERIALS AND METHODS

The Experiment was carried out at the Botanical Garden, Department of Floriculture and Medicinal plants, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore. The experiment was laid out in a split plot design with
13 treatment combinations replicated three times. The field lay out and randomizations of treatments to plots of size 2 × 2 m (4 square meters) were carried out as per the statistical methods suggested by Panse and Sukhatme (1985). The treatments consisted of four levels of spacing and nine bio-stimulants/organics.

Treatment details

Main plot treatments

Spacing: M$_1$ – 30 × 30 cm; M$_2$ – 45 × 45 cm; M$_3$ – 60 × 30 cm; M$_4$ – 60 × 45 cm.

Sub plot treatments

Bio-regulators/organics: S$_1$ – Recommended fertilizer dose; S$_2$ – Control (only FYM); S$_3$ – FYM + Panchagavya foliar spray – 2% at 15 days interval; S$_4$ – FYM + Panchagavya foliar spray – 3% at 15 days interval; S$_5$ – FYM + Moringa leaf extract foliar spray – 2% at 15 days interval; S$_6$ – FYM + Moringa leaf extract foliar spray – 4% at 15 days interval; S$_7$ – FYM + Humic acid 20 kg ha$^{-1}$ as basal; S$_8$ – FYM + Cytozyme foliar spray – 1% at 15 days interval; S$_9$ – FYM + Vermicompost – 2.5 t ha$^{-1}$ as basal.

The observations that were recorded are plant nitrogen uptake, plant phosphorous uptake and plant potassium uptake. The organics were sprayed at 15 days interval starting from 30 days after transplanting. The observations were recorded at 80 days after transplanting that is at harvest stage.

RESULTS AND DISCUSSION

Nitrogen uptake

The effect of M, S, M × S and S × M exerted a significant influence on nitrogen uptake (Table 1). Closer spacing (M$_1$) recorded significantly higher nitrogen uptake (184.16 kg ha$^{-1}$) and wider spacing (M$_4$) registered the lowest nitrogen uptake (73.10 kg ha$^{-1}$). Of various organics and bio regulators tried, RDF (S$_1$) treated plants recorded more nitrogen uptake (139.68 kg ha$^{-1}$) followed by panchagavya 3% (S$_4$) sprayed plants (125.39 kg ha$^{-1}$). The uptake was low (105.84 kg ha$^{-1}$) in control (S$_2$). The interaction effect of closer spacing + RDF (M$_1$S$_1$) registered higher nitrogen uptake (223.83 kg ha$^{-1}$) which was followed by closer spacing + panchagavya 3% spray (M$_1$S$_4$) (202.64 kg ha$^{-1}$). Lesser nitrogen uptake of 67.80 kg ha$^{-1}$ was recorded in wider spacing + control (M$_4$S$_2$) combination. The uptake of nutrients is primarily a function of total biomass production and nutrient content at cellular level. Increase in uptake of nutrients coincides with the rapid growth phase with a very low rate of uptake during initial vegetative phase. In the present study, nitrogen and phosphorous uptake was more under closer spacing + RDF followed by panchagavya and humic acid treatments. This may be attributed due to more population per plot. The increased uptake of nitrogen was supposed to be due to the better use efficiency of applied nitrogen fertilizer in the presence of humic acid coupled with the retarded nitrification process enabling the slow availability of applied nitrogen (Guminski, 1968). The principal physiological function of humic acid may be that they reduced the oxygen deficiency in plants which resulted in uptake of larger amount of nitrogen (Khristeva and Luk'Yanenko, 1962). According to Yadav (1989), the reactions of ammonium ion with humic acid yielding covalent compounds maintain the mobility of ammonium in solution and aids in the increase uptake of the same by plants. Another possible reason for enhanced nitrogen uptake in the presence of humic acid was suggested by Piccolo et al. (1992) who stated that the acid functionality of humic acid could simulate the nitrate uptake by plants. Nitrate reductase is the key enzyme for nitrogen assimilation by most of the plants (Campbell, 1999).

Humic substances induced the activity of enzymes such as invertase and nitrate reductase and thereby helped in increased assimilation of nitrogen by plants (Ferretti et al., 1992). Higher uptake of nitrogen by shoot could be due to the fact that nitrogen is the mobile element and it is utilized more in shoot than in root.

Phosphorous uptake

The effect of spacing, organics and bio regulators and interactions M × S and S × M exhibited a significant influence on phosphorous uptake (Table 1). Higher plant density (M$_1$) recorded more phosphorous uptake (17.99 kg ha$^{-1}$) and lesser plant density (M$_4$) registered lower phosphorous uptake (6.68 kg ha$^{-1}$). Among the different organics and bio regulators used, RDF (S$_1$) applied plants recorded greater phosphorous uptake (13.57 kg ha$^{-1}$) followed by panchagavya (S$_4$) sprayed plants (11.88 kg ha$^{-1}$) and humic acid (S$_8$) applied plants (10.72 kg ha$^{-1}$). The phosphorous uptake was lower (9.56 kg ha$^{-1}$) in control (S$_2$) treatment. Closer spacing + RDF (M$_1$S$_1$) combination recorded significantly higher phosphorous uptake (22.02 kg ha$^{-1}$) followed by M$_1$S$_4$ (20.03 kg ha$^{-1}$). The less phosphorous uptake (5.76 kg ha$^{-1}$) was observed in wider spacing + control (M$_4$S$_2$) interaction. Dell ‘Agnola and Nardi (1987) concluded that humic substances extracted from soil stimulated ion uptake by roots. Humic acid is known to be surface active and increases the permeability of root membranes and thereby enhances the nutrient uptake as stated by Rauthan and Schnitzer (1991). Application of humic acid increased the root growth by 58% and this could help in better assimilation of phosphorus by plants (Vaughan and Malcolm, 1979). The increase in phosphorous uptake may be due to the prevention of phosphorus fixation in the soil and also by forming humosphoso complexes which are easily assimilated by plants (Raina and Goswami, 1988). The increase in phosphorous accumulation in tomato shoot suggested that humic acid may enhance the uptake of phosphorous indirectly by complexing the iron (David et al., 1994). Addition of humic acid maintained high levels of acid phosphatase activity which increased phosphatase activity and holds key for increased
phosphorus uptake by plants (Malcolm and Vaughan, 1979). Organic phosphorus content in soil comprises of 30-70 percentage of the total phosphorus. Hydrolysis of these organic phosphorus compounds is essential for uptake by plants (Bhattacharyya and Ghosh, 2001) and humic acid brought out this hydrolysis (Adani et al., 1998).

Potassium uptake

The individual effect of spacing, organics and bio regulators and the interaction effect of M × S and S × M on potassium uptake were significant (Table 2). Among the spacing levels, potassium uptake was significantly higher (204.92 kg ha⁻¹) under closer spacing (M₁) followed by M₃ (117.35 kg ha⁻¹). Lesser score (71.45 kg ha⁻¹) was recorded in M₄ (wider spacing) level. Of different organics and bio regulators used, RDF (S₁) applied plants expressed more potassium uptake (150.32 kg ha⁻¹) followed by panchagavya 3% (S₄) given plants (134.11 kg ha⁻¹). The potassium uptake was less (113.03 kg ha⁻¹) in control (S₂). The effect of interaction on potassium uptake indicated that closer spacing + RDF (M₁S₁) combination recorded greater potassium uptake (252.83 kg ha⁻¹), which was followed by closer spacing + humic acid (M₁S₇) combination (227.14 kg ha⁻¹). The potassium uptake was less (64.78 kg ha⁻¹) at wider spacing + without spray (M₄S₂). From the present results it is evident that the potassium uptake was more in closer spacing + humic acid next to RDF, followed by panchagavya. David et al. (1994) suggested that the factors other than direct nutritional effect of humic acid may also operate in enhancing the potassium uptake by plants. According to Samson and Visser (1989), humic acid induced increase in the permeability of bio membranes for electrolytes accounted for increased uptake of potassium. Humic substances modify membrane bound ATPase activity and the relation between membrane ATPase activity, H⁺ extrusion and the ion uptake suggested that humic substance influence active uptake of potassium by interfering with specific ion carrier. In the present study, the findings exhibited that more of nutrient uptake (N, P and K) was found in closer spacing than wider spacing, but the leaf nutrient content (N, P and K) was more in wider spacing than the closer spacing. This may be due to the fact that, population per unit area in closer spacing was more than under wider spacing. Leaf nutrient content namely nitrogen and phosphorous, recorded significantly higher values on wider spacing + panchagavya 3% spray next to RDF than humic acid but potassium content registered higher value in wider spacing + humic acid next to RDF than panchagavya. The reason may be that nitrogen and phosphorous content was more in panchagavya spray and more potassium content in humic acid. The same was observed in case of nutrient uptake, but closer spacing recorded significantly higher uptake than wider spacing.

Conclusion

In the present study, wider spacing + RDF (M₄S₁) treatment combination recorded significantly higher values for leaf nitrogen and phosphorous consent followed by the treatment Wider spacing + panchagavya (M₄S₄). Regarding lead potassium content and plant potassium uptake, the treatment wider spacing + RDF (M₄S₁) combination recorded the highest leaf K content.

Table 1. Effect of spacing, organics and bio-regulators on N and P uptake (kg ha⁻¹) in black nightshade.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N (kg ha⁻¹)</th>
<th>P (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M₁</td>
<td>M₂</td>
</tr>
<tr>
<td>S₁</td>
<td>223.83</td>
<td>116.304</td>
</tr>
<tr>
<td>S₂</td>
<td>166.40</td>
<td>89.86</td>
</tr>
<tr>
<td>S₃</td>
<td>170.57</td>
<td>93.37</td>
</tr>
<tr>
<td>S₄</td>
<td>202.64</td>
<td>105.83</td>
</tr>
<tr>
<td>S₅</td>
<td>169.19</td>
<td>94.12</td>
</tr>
<tr>
<td>S₆</td>
<td>173.93</td>
<td>95.44</td>
</tr>
<tr>
<td>S₇</td>
<td>191.00</td>
<td>102.07</td>
</tr>
<tr>
<td>S₈</td>
<td>180.99</td>
<td>97.33</td>
</tr>
<tr>
<td>S₉</td>
<td>178.92</td>
<td>97.03</td>
</tr>
<tr>
<td>Mean</td>
<td>184.16</td>
<td>99.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>S</th>
<th>MS</th>
<th>SM</th>
<th>M</th>
<th>S</th>
<th>MS</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEd</td>
<td>0.82819</td>
<td>0.97562</td>
<td>1.95123</td>
<td>2.01747</td>
<td>0.27667</td>
<td>0.21132</td>
<td>0.48510</td>
<td>0.42264</td>
</tr>
<tr>
<td>CD (0.05)</td>
<td>2.02659</td>
<td>1.94903</td>
<td>3.89806</td>
<td>4.18312</td>
<td>0.67702</td>
<td>0.42264</td>
<td>1.04000</td>
<td>0.84433</td>
</tr>
</tbody>
</table>

Int. J. Agric.Extension Rural Dev.
(2.72%) followed by the treatment wider spacing + humic acid combination (M₄S₇).

REFERENCES

