Control of *Aspergillus niger* with garlic, onion and leek extracts

Reyhan Irkin¹ and Mihriban Korukluoglu²

¹Balıkesir University, Susurluk Vocational School, Susurluk, Balikesir, Turkey.
²Uludag University, Agricultural Faculty, Food Engineering Department, Görükle, Bursa, Turkey.

Accepted 7 August, 2013

Antifungal activity of “*Allium*” vegetables that is garlic (*Allium sativum* L.), onion (*Allium cepa* L.) and leek (*Allium porrum* L.) were investigated against *Aspergillus niger*. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of aqueous, ethyl alcohol and acetone extracts were determined by disc diffusion and broth dilution methods in the test tubes. Onion extract with ethyl alcohol (275 mg/mL MFC), aqueous garlic extract (325 mg/mL MFC) and aqueous leek extract (900 mg/mL MFC) found the most inhibitory against *A. niger*.

Key words: *Aspergillus niger*, garlic, onion, leek, antifungal activity.

INTRODUCTION

Aspergillus sp. are the most common fungal species which are able to produce mycotoxins in food and feed-stuffs. Mycotoxins are known to be potent hepatocarcinogens in animals and humans. The presence and growth of fungi may cause spoilage and result in a reduction in quality and quantity of foods (Paster et al., 1995; Beltmont and Carjaival, 1998; Sahin and Korukluoglu, 2000; Candlish et al., 2001; Galvano et al., 2001; Juglal et al., 2002; Soliman and Badeea, 2002; Rasooli and Abyaneh, 2004).

Natural plant extracts may provide an alternative to chemical preservatives. Over the years much effort has been devoted to the search for new antifungal materials from natural sources for food preservation (Karapınar, 1989; Topal, 1989; Paster et al., 1995; De et al., 1999; Yin and Tsaio, 1999; Nielsens and Rios, 2000; Galvano et al., 2001; Juglal et al., 2002; Soliman and Badeea, 2002; Onyeagba et al., 2004; Boyraz and Ozcan, 2005; Haciseferogullari et al., 2005).

Allium genus has over 500 members, each differing in maturing, color and taste, but with similar biochemical, phytochemical and neurtaceutical content. *Alliums* were revered to possess anti-bacterial and anti-fungal activities and include the powerful antioxidants, sulfur and other numerous phenolic compounds which arouse significant interests (Block, 1985; Topal, 1989; Yin and Cheng, 1998; Phay et al., 1999; Harris et al., 2001; Kyung and Lee, 2001; Rivlin, 2001; Griffiths et al., 2002; Benkeblia, 2004; Haciseferogullari et al., 2005).

The aim of this study was to investigate minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) doses of garlic (*Allium sativum* L.), onion (*Allium cepa* L.) and leek (*Allium porrum* L.) extracts (aqueous, acetone and ethyl alcohol) against to *Aspergillus niger*.

MATERIALS AND METHODS

Allium samples and water content

Onions (*A. cepa* L.) and leeks (*A. porrum* L.) were cultivated in Yenice-Canakkale region and garlic (*A. sativum* L.) was obtained from Balikesir regions of Turkey during harvesting season. Samples freshly harvested were classified for homogeneity and lack of flaws and prepared for analysis. Water content of fresh *Allium* samples were determined by using the official methods of AOAC (1990).

Microorganism

Aspergillus niger strain was isolated from tulum-cheese in Uludag University, Department of Food Engineering in Bursa, Turkey and identified using standard fungi determination procedures.
Preparation of material extracts

270 g of fresh onion, leek and garlic were peeled and then was chopped with 300 mL distilled water, ethanol (Panreac 121086.1612, 99.5%) and acetone (Merck 1.00013.2500, 99.5%) (w/v) by using a domestic blender (Braun model 4259, Germany) for 1 min at average speed. The mixture were macerated during 24 h at the + 4°C. After that, resulting extracts of materials were filtered and sterilized using a 0.45 µm pore size cellulose acetate membrane filter (Cole-Parmer-47 mm) under nitrogen gas pressure. The extracts were used directly. Dilutions were prepared from 900 to 100 mg/mL (by 25 mg/mL intervals). These dilutions were used in antifungal analysis. Ethyl alcohol, acetone and distilled water served as control.

Preparation of inoculum

A. niger was cultured on Sabouraud Dextrose Broth-SDB-(Oxoid CM0041) at 30°C for 22 h. Test fungi in SDB were enumerated by using serial dilution method. Final cell concentration of culture was 10^7 - 10^6 cfu/mL.

Antifungal activity tests

Disc diffusion method was used as an antimicrobial method (Yin and Tsao, 1999; Karaman et al., 2003; Benkebia, 2004). Sterile Sabouraud Dextrose Agar-SDA-(Oxoid CM0041) at 43-45°C and poured into the petri plates (9 cm diameter). Then the agar was allowed to solidify at + 4°C for 1 h. 0.2 mL of A. niger culture inoculum applied of each plate. Inoculum was evenly spread on agar using a glass L- rod spreader. The petri dishes were left at + 4°C for 1 h to allow agar surface to dry. Sterile filter papers (Schleicher and Schüll 2668, Germany, 6 mm diameter) were placed on the culture mediums and were impregnated with 50 µL material extracts between 100 - 900 mg/mL concentrations and placed on the inoculated plates. Distilled water and other solvents were added at the same concentrations on the discs to provide a control. After 30 min, plates were turned upside down and incubated at 30°C for 24 h. At the end of the period, inhibition zones, formed in the medium were measured in millimeters (mm). All experiments were done in three replicates.

Determination of minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC)

5 mL of sterile extracts at different concentrations were taken in to the sterile empty tubes and 1 mL of A. niger culture was added in to the extracts and mixed. After that 1 mL of (extract + A. niger) culture was added in to the 5 mL of sterile SDB in the tubes. Then all the tubes were incubated at 30°C for 15 days. Observations were made for visible growth of fungi. The highest dilution (lowest concentration) showing no visible growth was regarded as Minimal Inhibitory Concentrations (MIC) during 15 days. Cells from the tubes showing no growth were subcultured on SDA plates and incubated at 30°C for 5 days to determine if the inhibition was reversible or permanent. Minimal Fungicidal Concentration (MFC) was determined as the highest dilution (lowest concentration) at which no growth occurred on the plates. In control tubes 1 mL (extract and A. niger culture) were added in to the 5 mL of solvent; ethyl alcohol or acetone or water seperately. All the tests were done in three replicates (Abbasoglu, 1996; Yin and Tsao, 1999; Flörl et al., 2003; Rasooli and Abyaneh, 2004).

RESULTS AND DISCUSSION

Water contents of fresh Allium samples are listed in Table 1. The MIC and MFC (mg/mL) concentrations of Allium plant extracts and inhibitory zones (mean ± SD) against A. niger are presented in Table 2. It is seen that Allium plants have antifungal effects to A. niger. The most inhibitory plant was garlic, followed by onion and leek. Ethyl alcohol extracts of the garlic and onion significantly show inhibitor effect against A. niger. Also, inhibitor activities were observed for aqueous extracts of garlic and leek. Acetone extracts of onion and leek did not show any effect on A. niger. Ethyl alcohol extract of the onion has the highest inhibitory activity when their MIC and MFC values are compared.

The inhibitory activity of Allium vegetables extracts against mould have been reported by numerous authors. It has also been observed that alliicin, thiosulfonates and other compounds show fungistatic activities against A. niger, Rhodotorula nigricans, Penicillium italicum, Peni- cillium cyclopium, Aspergillus flavus, Cladosporium macrocarpum, Aspergillus fumigatus, Aspergillus alutaceus, Aspergillus terreus and Penicillium chrysogenum (Wei et al., 1967; Graham and Graham, 1987; Topal, 1989; Hafez and Said, 1997; Ankri and Mirel, 1999; Harris et al., 2001). Similarly, ajoene compound which is a deri-vative of alliicin and obtained from garlic with ethyl alcohol extraction is very inhibitory against A. niger, Candida albicans and Paracoccidioides brasiliensis (Naganawa et al., 1996). Yoshida et al. (1987) reported that ajoene compound from garlic have stronger antifungal activity than alliicin. They are determined that ajoene damages the cell walls of fungi. Yin and Tsao (1999) studied antifungal effects of various Allium plants. They found 35 ± 3 µg/mL MFC for garlic bulb, 748 ± 15 µg/mL MFC for onion bulb and 91 ± 10 µg/mL MFC for chinese leek against A. niger. These authors observe that garlic shows the highest antifungal activity against the three Aspergillus species.

Antifungal effects of onion and garlic essential oils against some fungi have also been investigate. A. niger is less inhibited by low concentrations of essential oils of green and yellow onions but red onion and garlic essential oils show strong inhibitory effects against A. niger (Benkebia, 2004). Fistulosin, an antifungal compound isolates from onions, shows antifungal activities against several fungal species (Phay et al., 1999). Combined extract of cori fructus, cinnamon and chinese chieve (1:6:6, v/v/v) also exhibit high inhibitor activity against A. niger.

Table 1. Water content of Allium fresh samples.

<table>
<thead>
<tr>
<th>Allium sample</th>
<th>Water content (%) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic bulb (Allium sativum L.)</td>
<td>76.1±2.2</td>
</tr>
<tr>
<td>Onion bulb (Allium cepa L.)</td>
<td>89.3±0.65</td>
</tr>
<tr>
<td>Whole Leek (Allium porrum L.)</td>
<td>87.9±0.36</td>
</tr>
</tbody>
</table>
Allium cepa, Allium sativum, Ögütcü H, Sengül M, Adıgüzel A

REFERENCES

The authors thank Uludag University Research Foundation for the support of 2002/19 project.

ACKNOWLEDGMENT

The authors thank Uludag University Research Foundation for the support of 2002/19 project.

REFERENCES

Karapinar M (1989). Inhibition effects of some spice agents on aflatoxi-

Table 2. The minimal inhibitory and minimal fungicidal concentrations (MIC and MFC) and inhibitory zones diameters of Allium plant extracts against A. niger.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Aqueous MIC/MFC (mg/mL) (mg/mL)</th>
<th>Ethyl alcohol MIC/MFC (mg/mL) (mg/mL)</th>
<th>Acetone MIC/MFC (mg/mL) (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic (Allium sativum L.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC/MFC</td>
<td>325</td>
<td>325</td>
<td>>900</td>
</tr>
<tr>
<td>Inhibition zones*</td>
<td>15.5±0.9</td>
<td>15.5±0.9</td>
<td>>900</td>
</tr>
<tr>
<td>Onion (Allium cepa L.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC/MFC</td>
<td>>900</td>
<td>>900</td>
<td>>900</td>
</tr>
<tr>
<td>Inhibition zones*</td>
<td>-</td>
<td>11.8±0.3</td>
<td>>900</td>
</tr>
<tr>
<td>Leek (Allium porrum L.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC/MFC</td>
<td>900</td>
<td>>900</td>
<td>>900</td>
</tr>
<tr>
<td>Inhibition zones*</td>
<td>12.3±1.1</td>
<td>>900</td>
<td>>900</td>
</tr>
</tbody>
</table>

*Inhibition zones (mm, mean ± SD).

(Mau et al., 2001).

A. niger, P. italicum, Tryptophyton gypseum and Microsporon audouini are inhibited by thiosulfonates compounds in onions. However, antifungal studies about onions are very limited. Researchers have observed that ether extracts of onion show inhibitory effect against A. flavus and A. parasiticus (Wei et al., 1967; Sharma et al., 1979; Pruthi, 1980). Topal (1989) reported that onion exhibits more inhibitory activity against bacteria than yeast and fungi. Researches on antifungal effects of leek are also very limited. In Kivanc and Kunduhoglu (1997) study, leek was found to have the lowest inhibitory vegetable against yeasts compared to onion, cabbage, radish and garlic. Tsao and Yin (2001) obtained 32 mg/L MIC for chinese leek oil and 20 mg/L MIC for garlic oil against A. niger.

It is concluded from the results that extracts of Allium vegetables can inhibit mould growth. Effectiveness of this inhibition was related to the solvent used in the extraction. The relative percentages for different alkyl groups and ratios of sulphur compounds can vary with the part of the plant. Also growing conditions of the plant affect the ratio of inhibitor of compounds (Block et al., 1992; Kyung and Lee, 2001; Benkeblia, 2004). In food preparations, Allium vegetables may provide a good inhibitory effect against fungal growth. However, despite the fact that Allium plants could be used as a potential inhibitory source because of instability of alliin, thiosulfonates and related compounds, the strong odor may limit their use as food additives, necessitating further research.
genic mould growths. International Food Symposium. 4-6 April, Bursa-Turkey, Proc. Book. 129-137 (In Turkish).

Topal S (1989). The researches about antimicrobial effects of garlic and onion. International International Food Symposium. 4-6 April, Bursa-Turkey, Proceeding Book. pp 450-462 (In Turkish).

